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Abstract. A classical result of A. Cohn states that, if we express a prime p in base 10 as

p = an10n + an−110n−1 + · · ·+ a110 + a0,

then the polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is irreducible in Z[x]. This

problem was subsequently generalized to any base b by Brillhart, Filaseta, and Odlyzko.

We establish this result of A. Cohn in OK [x], K an imaginary quadratic field such that its

ring of integers, OK , is a Euclidean domain. For a Gaussian integer β with |β| > 1+
√

2/2,

we give another representation for any Gaussian integer using a complete residue system

modulo β, and then establish an irreducibility criterion in Z[i][x] by applying this result.

1. Introduction

A classical result of A. Cohn [7] states that, if we express a prime p in base 10
as

p = an10n + an−110n−1 + · · ·+ a110 + a0,

then the polynomial f(x) = anx
n +an−1x

n−1 + · · ·+a1x+a0 is irreducible in Z[x].
This problem was subsequently generalized to any base b by Brillhart, Filaseta, and
Odlyzko [2]. In 2002, Murty gave a proof of this fact [5] that was conceptually sim-
pler than the one in [2]. Later, Girstmair obtained an easy but useful generalization
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of Murty’s result [4]. In addition, Brillhart, Filaseta, and Odlyzko [2] generalized
Cohn’s result in another direction by proving that, if f(x) =

∑n
i=0 aix

i ∈ Z[x],
where 0 ≤ ai ≤ 167 for all i, and if f(10) is prime, then f(x) is irreducible. In 1988,
Filaseta improved this fact by proving that, if f(x) =

∑n
i=0 aix

i is a polynomial in
Z[x] such that 0 ≤ ai ≤ an1030 for 0 ≤ i ≤ n− 1, and if f(10) is prime, then f(x)
is irreducible [3].

In another direction, let K be an imaginary quadratic field and OK the ring of
integers of K. We are interested in constructing a base β representation in OK . We
prove that for fixed β ∈ OK\{0}, any algebraic integer η has a base β representation
by using the division algorithm in OK . Henceforth, the ring of integers OK in this
paper must be a Euclidean domain. Thus, OK is a unique factorization domain
and so is OK [x]. We know that K is the quotient field of OK [1] and the units in
OK [x] are the units in OK [6]. We say that a non-zero polynomial p(x) ∈ OK [x]
is irreducible if p(x) is not a unit and if p(x) = f(x)g(x) with f(x), g(x) in OK [x],
then f(x) or g(x) is a unit in OK . For a unique factorization domain (UFD) R, a
polynomial f(x) ∈ R[x] is primitive if its coefficients are relatively prime, equiva-
lently, no irreducible element of R divides every coefficient of f(x). Gauss’s lemma
for unique factorization domain states that if R is a unique factorization domain,
then the product of primitive polynomials in R[x] is primitive. If F is the quotient
field of R and p(x) ∈ R[x]\R, then p(x) is irreducible in R[x] if and only if p(x)
is primitive and irreducible over F [8]. From this fact, we get that a non-constant
polynomial in OK [x] is irreducible in OK [x] if and only if it is both irreducible over
K and primitive in OK [x]. Consequently, to prove that a polynomial f in OK [x] is
irreducible over K, it suffices to prove that f is irreducible in OK [x].

In the present work, we establish the result of A. Cohn in OK [x] by using base
β representation in OK . In addition, another base β representation in the ring of
Gaussian integers, Z[i], is also constructed using a complete residue system modulo
β ∈ Z[i]. Applying this result, we establish an irreducibility criterion in Z[i][x] and
then show that the generalized result of A. Cohn in [2], for prime numbers in Z that
remain prime in Z[i], can be deduced from our results.

2. Basic Results

In this section, we give some definition, notation and results to be used through-
out.

Let m ∈ Z be square-free. The function φm : Q(
√
m)→ Q ([1]) defined by

φm(r + s
√
m) = |r2 −ms2| (r, s ∈ Q)

possesses the following properties.

(O1) φm(α) ∈ N ∪ {0} for all α ∈ OQ(
√
m).

(O2) For α ∈ Q(
√
m), φm(α) = 0⇔ α = 0.

(O3) φm(αβ) = φm(α)φm(β) for all α, β ∈ Q(
√
m).
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(O4) If m < 0, then |α|2 = φm(α) for all α ∈ Q(
√
m).

Theorem 2.1.([1]) Let m < 0 be square-free. Then Z+Z
√
m is a Euclidean domain

with respect to φm if and only if m = −1,−2.

Theorem 2.2.([1]) Let m < 0 be square-free with m ≡ 1 (mod 4). Then
Z + Z ((1 +

√
m)/2) is a Euclidean domain with respect to φm if and only if

m = −3,−7,−11.

Proposition 2.3. Let K = Q(
√
m) be an imaginary quadratic field such that OK

is a Euclidean domain. For α ∈ OK , we have

(1) α ∈ U (OK) if and only if φm(α) = 1.

(2) If φm(α) = p, a rational prime, then α is a prime element in OK .

Proof. (1) If α ∈ U (OK), we clearly have φm(α) = 1. Conversely, assume that
φm(α) = 1. Since OK is a Euclidean domain, there exist λ, ρ ∈ OK such that
1 = αλ+ ρ, where 0 ≤ φm(ρ) < φm(α) = 1. It follows from (O2) that ρ = 0 and so
α ∈ U (OK).

(2) Assume that φm(α) = p, a rational prime. If α = βγ for some β, γ ∈ OK ,
then p = φm(α) = φm(β)φm(γ), which implies by (O1) that either φm(β) = 1
or φm(γ) = 1. Using (1), β ∈ U (OK) or γ ∈ U (OK) . This shows that α is an
irreducible element and so α is prime element in OK , because OK is a unique fac-
torization domain. 2

3. Main Results

Let K = Q(
√
m) be an imaginary quadratic field such that its ring of in-

tegers OK is a Euclidean domain. By Theorems 2.1 and 2.2, we know that
m = −1,−2,−3,−7, or −11. Our first objective is to establish the result of A.
Cohn to OK [x]. Let us first prove that for fixed β ∈ OK\{0}, any algebraic integer
η has a base β representation.

Recall the following result [9], which is the division algorithm for Gaussian
integers. Its proof is also valid for the case m = −2.

Proposition 3.1. Let K = Q(
√
m), where m = −1,−2 and let β ∈ OK\{0} be

fixed. For α ∈ OK , there exist λ, ρ ∈ OK such that α = λβ + ρ, with 0 ≤ |ρ| ≤
(
√

1−m/2)|β|.
Proof. Suppose that α/β = r+ s

√
m, where r, s ∈ Q. It is clear that r, s ∈ Z if and

only if β divides α. Let

(3.1) a =

⌊
r +

1

2

⌋
and b =

⌊
s+

1

2

⌋
.

Then |r − a| ≤ 1/2 and |s− b| ≤ 1/2. Now, let λ = a+ b
√
m and ρ = α−λβ. Then
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λ, ρ ∈ OK , α = λβ + ρ, and so

0 ≤ |ρ| = |β|
∣∣∣∣αβ − λ

∣∣∣∣
= |β|

∣∣(r − a) + (s− b)
√
m
∣∣

= |β|
√

(r − a)
2 −m (s− b)2

≤
√

1−m
2

|β| . 2

The division algorithm for the cases m = −3,−7,−11 is as follows:

Proposition 3.2. Let K = Q(
√
m), where m = −3,−7 or −11 and let β ∈ OK\{0}

be fixed. For α ∈ OK , there exist λ, ρ ∈ OK such that α = λβ + ρ, with 0 ≤ |ρ| ≤
(
√

4−m/4)|β|.
Proof. Suppose that α/β = r + s

√
m, where r, s ∈ Q. Let

(3.2) a =

⌊
2s+

1

2

⌋
and b =

⌊
r − a

2
+

1

2

⌋
.

It follows that |2s− a| ≤ 1/2 and |r − a/2− b| ≤ 1/2. Now, let λ = b +
a (1 +

√
m) /2 and ρ = α− λβ. Then λ, ρ ∈ OK , α = λβ + ρ, and so

0 ≤ |ρ| = |β|
∣∣∣∣αβ − λ

∣∣∣∣
= |β|

∣∣∣(r − a

2
− b
)

+
(
s− a

2

)√
m
∣∣∣

= |β|
√(

r − a

2
− b
)2
−m

(
s− a

2

)2
≤
√

4−m
4

|β| . 2

The following two theorems show that for fixed β ∈ OK , any η ∈ OK\{0} has
a base β representation.

Theorem 3.3. Let K = Q(
√
m), where m = −1,−2. Let β ∈ OK be such that

|β| > 1 +
√

1−m/2. Then any η ∈ OK\{0} can be written as

η = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0,

where n ≥ 0, αi ∈ OK (0 ≤ i ≤ n), αn 6= 0, |αn| < |β|, and 0 ≤ |αi| ≤
(
√

1−m/2)|β| (0 ≤ i ≤ n− 1).

Proof. If |η| < |β|, then η = 0 ·β+η and we are done. Now we assume that |η| ≥ |β|.
By Proposition 3.1, we obtain

(3.3) η = δ0β + α0, 0 ≤ |α0| ≤
√

1−m
2

|β|.
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We claim that |η| > |δ0|. For if |δ0| ≥ |η|, then |δ0| ≥ |δ0β+α0| ≥ |δ0||β| − |α0| and
so

(3.4) |α0| ≥ |δ0| (|β| − 1) .

Using (3.3), (3.4) and |β| > 1 +
√

1−m/2, we obtain

|δ0| ≥ |η| ≥ |β| ≥
2√

1−m
|α0| ≥

2√
1−m

|δ0| (|β| − 1) > |δ0|,

which is a contradiction.
Returning to (3.3), if |δ0| < |β|, then we are done, while, if |δ0| ≥ |β|, then we

continue by dividing δ0 by β and using the last claim to get

δ0 = δ1β + α1, 0 ≤ |α1| ≤
√

1−m
2

|β| and |δ0| > |δ1|.

Continue this process to obtain

δ1 = δ2β + α2, 0 ≤ |α2| ≤
√

1−m
2

|β| and |δ1| > |δ2|,

...

δn−2 = δn−1β + αn−1, 0 ≤ |αn−1| ≤
√

1−m
2

|β| and |δn−2| > |δn−1|,

δn−1 = 0 · β + αn, |αn| = |δn−1| < |β| and |δn−1| > |δn| = 0.

The last step occurs when a quotient, 0 is obtained because

|η|2 > |δ0|2 > |δ1|2 > |δ2|2 > · · · ≥ 0,

i.e. (|δk|2)k≥0 is a decreasing sequence of non-negative integers.
Replacing δ0 in (3.3), we get

η = (δ1β + α1)β + α0 = δ1β
2 + α1β + α0.

Successively substituting for δ1, δ2, . . . , δn−1, we obtain

η = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0,

where αn = δn−1 6= 0, |αn| < |β|, and 0 ≤ |αi| ≤ (
√

1−m/2)|β| for all i ∈
{0, 1, . . . , n− 1}. 2

Similar to the cases m = −1,−2, we have:

Theorem 3.4. Let K = Q(
√
m), where m = −3,−7 or −11 and let β ∈ OK be

fixed with |β| > 1 +
√

4−m/4. Then any η ∈ OK\{0} has a base β representation
in the form

η = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0,
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where n ≥ 0, αi ∈ OK (0 ≤ i ≤ n), αn 6= 0, |αn| < |β| and 0 ≤ |αi| ≤
(
√

4−m/4)|β| (0 ≤ i ≤ n− 1).

Note that a base β representation in OK is not unique. For example,

33 + 100i = (−3− i)β2 + (−2− 2i)β + (−1− 2i),

33 + 100i = −3β2 + (3 + 2i)β + (4 + i)

are two base β representations of 33 + 100i in Z[i] when β = −3 + 5i.
To establish the result of A. Cohn in OK [x], we prove the following lemma.

Lemma 3.5. Let

f(x) = αnx
n + αn−1x

n−1 + · · ·+ α1x+ α0 ∈ C[x]

be such that n ≥ 2 and |αi| ≤M (0 ≤ i ≤ n− 2) for some positive real number M .
If f(x) satisfies

(i) Re(αn) ≥ 1,Re(αn−1) ≥ 0, Im(αn−1) ≥ 0 and

(ii) Re(αn−1) Im(αn) ≥ Re(αn) Im(αn−1),

then any complex zero α of f(x) satisfies either Re(α) < 0 or |α| < (1+
√

1 + 4M)/2.

Proof. Let α = a + bi be any complex zero of f(x). If |α| ≤ 1, then |α| <
(1 +

√
1 + 4M)/2. Now we assume that |α| > 1 and a = Re(α) ≥ 0. Then∣∣∣∣f(α)

αn

∣∣∣∣+
∣∣∣αn−2

α2

∣∣∣+ · · ·+
∣∣∣α0

αn

∣∣∣ ≥ ∣∣∣∣f(α)

αn
−
(αn−2

α2
+ · · ·+ α0

αn

)∣∣∣∣ .
Since |αi| ≤M (0 ≤ i ≤ n− 2), we have∣∣∣∣f(α)

αn

∣∣∣∣+
M

|α|2 − |α|
>

∣∣∣∣f(α)

αn
−
(αn−2

α2
+ · · ·+ α0

αn

)∣∣∣∣
so that

(3.5)

∣∣∣∣f(α)

αn

∣∣∣∣ > ∣∣∣αn +
αn−1

α

∣∣∣− M

|α|2 − |α|
.

Next, we will show that

(3.6)
∣∣∣αn +

αn−1

α

∣∣∣ ≥ 1.

For convenience, we set

αn = an + bni and αn−1 = an−1 + bn−1i, i =
√
−1.
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If b = Im(α) ≥ 0, then by condition (i) and a ≥ 0, we obtain∣∣∣αn +
αn−1

α

∣∣∣ ≥ Re
(
αn +

αn−1

α

)
,

= an +
1

|α|2
(an−1a+ bn−1b) ,

≥ an ≥ 1.

Now, assume that b < 0. Then∣∣∣αn +
αn−1

α

∣∣∣2 =
(

Re(αn) + Re
(αn−1

α

))2
+
(

Im(αn) + Im
(αn−1

α

))2
,

≥ 1 + 2an Re
(αn−1

α

)
+ 2bn Im

(αn−1

α

)
,

= 1 +
2an
|α|2

(an−1a+ bn−1b) +
2bn
|α|2

(bn−1a− an−1b) .

If bn < 0, then condition (ii) implies an−1 = bn−1 = 0 so that |αn + αn−1/α|2 ≥ 1.
If bn ≥ 0, then using conditions (i), (ii) and a ≥ 0, we get∣∣∣αn +

αn−1

α

∣∣∣2 ≥ 1 +
2an
|α|2

bn−1b−
2bn
|α|2

an−1b,

= 1 +
2(−b)
|α|2

(an−1bn − anbn−1) ≥ 1

so that |αn + αn−1/α| ≥ 1. Thus, by (3.5) and (3.6), we deduce that∣∣∣∣f(α)

αn

∣∣∣∣ > 1− M

|α|2 − |α|
=
|α|2 − |α| −M
|α|2 − |α|

.

Since f(α) = 0 and |α| > 1, we obtain

|α| < 1 +
√

1 + 4M

2
,

as desired. 2

The following five theorems are our first main results.

Theorem 3.6. Let β ∈ Z[i] be such that |β| ≥ (6 +
√

2 +
√

6 + 12
√

2)/4 ≈ 3.05
and Re(β) ≥ 1. For a Gaussian prime π, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0

is its base β representation with n ≥ 1, satisfying the conditions (i) and (ii) of
Lemma 3.5, then f(x) = αnx

n +αn−1x
n−1 + · · ·+α1x+α0 is irreducible in Z[i][x].
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Proof. Clearly, f(x) is irreducible if deg f(x) = 1. Now we suppose that deg f(x) ≥ 2
and f(x) is reducible in Z[i][x]. Then we have f(x) = g(x)h(x) for some non-
constant polynomials g(x) and h(x) in Z[i][x] and so π = g(β)h(β). Since π is a
Gaussian prime, either g(β) or h(β) is a unit so that either |g(β)| = 1 or |h(β)| = 1.
Without loss of generality, we may suppose that |g(β)| = 1.

Since |β| ≥ (6 +
√

2 +
√

6 + 12
√

2)/4, we have

|β|2 − 2

(
6 +
√

2

4

)
|β|+

(
6 +
√

2

4

)2

−

(
6 +
√

2

4

)2

+ 2 ≥ 0

and so 4|β|2−2
(
6 +
√

2
)
|β|+8 ≥ 0. Thus (2|β|−3)2 = 4|β|2−12|β|+9 ≥ 1+2

√
2|β|.

It follows that

(3.7) |β| −
1 +

√
1 + 2

√
2|β|

2
≥ 1.

Since deg g(x) ≥ 1, we can express g(x) in the form

g(x) = ε
∏
i

(x− γi),

where ε is the leading coefficient of g(x) and the product is over the set of complex
zeros of g(x). By Theorem 3.3, we have |αi| ≤ (

√
2/2)|β| for all i ∈ {0, 1, . . . , n−1}.

It follows by Lemma 3.5 that any zero γ of g(x) satisfies either Re(γ) < 0 or

|γ| <
1 +

√
1 + 2

√
2|β|

2
.

In the former case, since Re(β) ≥ 1, we have |β−γ| ≥ Re(β−γ) = Re(β)−Re(γ) > 1.
In the latter case, we have

|β − γ| ≥ |β| − |γ| > |β| −
1 +

√
1 + 2

√
2|β|

2
≥ 1,

by (3.7). It follows that

1 = |g(β)| = |ε|
∏
i

|β − γi| ≥
∏
i

|β − γi| > 1,

which is a contradiction. 2

Example 3.7. Let β = 4 − i and π = 230 + i. Since φ−1(230 + i) = 52901 is a
rational prime, 230 + i is a Gaussian prime by Proposition 2.3 (2). Since

230 + i = (2 + 2i)(4− i)3 + 2(4− i)2 + 2i(4− i)− i,
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the polynomial f(x) = (2+2i)x3+2x2+2ix− i is irreducible in Z[i][x], by Theorem
3.6.

Theorem 3.8. Let β ∈ Z + Z
√
−2 be such that Re(β) ≥ 1 and |β| ≥ (6 +

√
3 +√

7 + 12
√

3)/4 ≈ 3.2508. For a prime element π in Z + Z
√
−2, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0

is its base β representation with n ≥ 1, satisfying the conditions (i) and (ii) of
Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in(

Z + Z
√
−2
)

[x].

Proof. The proof is similar to that of Theorem 3.6, and so we merely mention the

crucial step. Since |β| ≥ (6 +
√

3 +
√

7 + 12
√

3)/4, we have

|β|2 − 2

(
6 +
√

3

4

)
|β|+

(
6 +
√

3

4

)2

−

(
6 +
√

3

4

)2

+ 2 ≥ 0,

and so 4|β|2 − 2
(
6 +
√

3
)
|β| + 8 ≥ 0. Thus, (2|β| − 3)

2
= 4 |β|2 − 12|β| + 9 ≥

1 + 2
√

3|β|. It follows that

|β| −
1 +

√
1 + 2

√
3|β|

2
≥ 1. 2

Theorem 3.9. Let β ∈ Z + Z
((

1 +
√
−3
)
/2
)

be such that Re(β) ≥ 1 and

|β| ≥ (12 +
√

7 +
√

23 + 24
√

7)/8 ≈ 2.99327. For a prime element π in β ∈
Z + Z

((
1 +
√
−3
)
/2
)
, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0

is its base β representation with n ≥ 1, satisfying the conditions (i) and (ii) of
Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in(

Z + Z
((

1 +
√
−3
)
/2
))

[x].

Proof. Since |β| ≥ (12 +
√

7 +
√

23 + 24
√

7)/8, we have

|β|2 − 2

(
12 +

√
7

8

)
|β|+

(
12 +

√
7

8

)2

−

(
12 +

√
7

8

)2

+ 2 ≥ 0

and so 4|β|2−
(
12 +

√
7
)
|β|+8 ≥ 0. Thus (2|β|−3)2 = 4|β|2−12|β|+9 ≥ 1+

√
7|β|.

It follows that

|β| −
1 +

√
1 +
√

7|β|
2

≥ 1. 2
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Example 3.10. Let β = 4 and π = 69+
(
1 +
√
−3
)
/2. Since φ−3

(
69 + (1 +

√
−3)/2

)
= 4831 is a rational prime, by Proposition 2.3 (2), π is a prime element in
Z + Z

((
1 +
√
−3
)
/2
)
. Since

69 +
1 +
√
−3

2
= 43 + 4 +

3 +
√
−3

2
,

the polynomial f(x) = x3+x+
(
3 +
√
−3
)
/2 is irreducible in

(
Z + Z((1 +

√
−3)/2)

)
[x],

by Theorem 3.9.

Theorem 3.11. Let β ∈ Z + Z
((

1 +
√
−7
)
/2
)

be such that Re(β) ≥ 1 and

|β| ≥ (12 +
√

11 +
√

27 + 24
√

11)/8 ≈ 3.20516. For a prime element π in
Z + Z

((
1 +
√
−7
)
/2
)
, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0

is its base β representation with n ≥ 1 satisfying the conditions (i) and (ii) of
Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in(

Z + Z
((

1 +
√
−7
)
/2
))

[x].

Proof. Since |β| ≥ (12 +
√

11 +
√

27 + 24
√

11)/8, we have

|β|2 − 2

(
12 +

√
11

8

)
|β|+

(
12 +

√
11

8

)2

−

(
12 +

√
11

8

)2

+ 2 ≥ 0

and so 4|β|2 −
(
12 +

√
11
)
|β| + 8 ≥ 0. Thus (2|β| − 3)2 = 4|β|2 − 12|β| + 9 ≥

1 +
√

11|β|. It follows that

|β| −
1 +

√
1 +
√

11|β|
2

≥ 1. 2

Theorem 3.12. Let β ∈ Z + Z
((

1 +
√
−11

)
/2
)

be such that Re(β) ≥ 1 and

|β| ≥ (12 +
√

15 +
√

31 + 24
√

15)/8 ≈ 3.37579. For a prime element π in Z +
Z
((

1 +
√
−11

)
/2
)
, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0

is its base β representation with n ≥ 1 satisfying the conditions (i) and (ii) of
Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in(

Z + Z
((

1 +
√
−11

)
/2
))

[x].

Proof. Since |β| ≥ (12 +
√

15 +
√

31 + 24
√

15)/8, we have

|β|2 − 2

(
12 +

√
15

8

)
|β|+

(
12 +

√
15

8

)2

−

(
12 +

√
15

8

)2

+ 2 ≥ 0
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and so 4|β|2 −
(
12 +

√
15
)
|β| + 8 ≥ 0. Thus (2|β| − 3)2 = 4|β|2 − 12|β| + 9 ≥

1 +
√

15|β|. It follows that

|β| −
1 +

√
1 +
√

15|β|
2

≥ 1. 2

For the second part of this work, we establish an irreducibility criterion in
Z[i][x] by using a complete residue system for Gaussian integers.We first recall the
definition of congruence and a complete residue system for Gaussian integers.

Definition 3.13.([9]) Let α, β and γ be Gaussian integers such that γ 6= 0. We say
that α is congruent to β modulo γ and we write α ≡ β (mod γ) if γ | (α− β).

Definition 3.14.([9]) A complete residue system modulo γ, where γ is a non-zero
Gaussian integer, is a set of Gaussian integers such that every Gaussian integer is
congruent modulo γ to exactly one element of this set.

Example 3.15.([9]) For a Gaussian integer γ = a+ bi with d = gcd(a, b), the set

(3.8) C :=

{
x+ yi | x = 0, 1, . . . ,

a2 + b2

d
− 1 and y = 0, 1, . . . , d− 1

}
is a complete residue system modulo γ.

By using (3.8), we prove in the following proposition that for fixed a Gaussian
integer β with |β| > 1 + 1/

√
2, any Gaussian integer η can be written under a base

β(C) representation.

Proposition 3.16. Let β = a + bi ∈ Z[i] be such that |β| > 1 + 1/
√

2. Then any
η ∈ Z[i]\{0} can be written as a base β(C) representation in the form

η = γnβ
n + γn−1β

n−1 + · · ·+ γ1β + γ0,

where n ≥ 0, γn ∈ Z[i]\{0}, and γi ∈ C (0 ≤ i ≤ n− 1).

Proof. If |η| < |β|, then η = η · β0 and so we are done. Assume that |η| ≥ |β|. By
Theorem 3.3, η can be written as base β representation in the form

η = αkβ
k + αk−1β

k−1 + · · ·+ α1β + α0.

By Definition 3.14 and Example 3.15, there exists γ0 ∈ C such that α0 ≡ γ0 (mod β)
and so α0 = γ0 + δ0β for some δ0 ∈ Z[i]. It follows that

η = αkβ
k + · · ·+ (α1 + δ0)β + γ0.

As there exists γ1 ∈ C such that α1 + δ0 ≡ γ1 (mod β), we have α1 + δ0 = γ1 + δ1β
for some δ1 ∈ Z[i], and so

η = αkβ
k + · · ·+ (α2 + δ1)β2 + γ1β + γ0.
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Continuing the process, we obtain

η = (αk + δk−1)βk + γk−1β
k−1 + · · ·+ γ1β + γ0,

where γ0, γ1, . . . , γk−1 ∈ C. Since there exists γk ∈ C such that αk + δk−1 ≡ γk
(mod β), then αk + δk−1 = γk + δkβ for some δk ∈ Z[i]. It follows that

η = δkβ
k+1 + γkβ

k + · · ·+ γ1β + γ0.

If δk 6= 0, then we are done. If δk = 0, then there exists the largest integer i ∈
{0, 1, . . . , k} such that γi 6= 0 and thus

η = γiβ
i + γi−1β

i−1 + · · ·+ γ1β + γ0,

as desired. 2

For a non-zero Gaussian integer β = a+ bi, it is clear that

max{|a|, |b|} ≤ a2 + b2

d
,

where d = gcd(a, b). It follows that

C′ := {x+ yi | x = 0, 1, . . . ,max{|a|, |b|} − 1 and y = 0, 1, . . . , d− 1} ⊆ C.

Note that if d = 1, then

C′ = {0, 1, . . . ,max{|a|, |b|} − 1} ,

while if b = 0, then d = |a| and so

C′ = {x+ yi | x, y = 0, 1, . . . , |a| − 1} = C.

By applying Lemma 3.5 and Proposition 3.16, we obtain an irreducibility crite-
rion in Z[i][x].

Theorem 3.17. Let β ∈ {2± 2i, 1± 3i, 3± i} or β = a + bi ∈ Z[i] be such that
|β| ≥ 2 +

√
2 and a ≥ 1. For a Gaussian prime π, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0,

is its base β(C′) representation with n ≥ 1 and Re(αn) ≥ 1 satisfying condition (ii)
of Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in

Z[i][x].

Proof. Clearly, f(x) is irreducible if deg f(x) = 1. Now we suppose that deg f(x) ≥ 2
and f(x) is reducible in Z[i][x]. As π = f(β) is a Gaussian prime, so f(x) = g(x)h(x)
for some positive degree polynomials g(x) and h(x) in Z[i][x]. It follows that g(β)
or h(β) is a unit and so either |g(β)| = 1 or |h(β)| = 1. Without loss of generality,
we may assume that |g(β)| = 1.
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Let M =

√
(max{a, |b|} − 1)

2
+ (d− 1)2. Since αi ∈ C′ for all i ∈

{0, 1, . . . , n− 1}, we have |αi| ≤ M for all i ∈ {0, 1, . . . , n − 1}. Now we show
that

(3.9) |β| ≥ 3 +
√

1 + 4M

2
.

Clearly, (3.9) holds if β ∈ {2± 2i, 1± 3i, 3± i}. For the case |β| ≥ 2 +
√

2 with
a ≥ 1, we prove the following.
Claim. If |β| ≥ 2 +

√
2, a ≥ 1, then

√
2(|β| − 1) ≥M.

Proof of the Claim: Case 1. a ≥ |b|: Since d = gcd(a, b) and a ≥ 1, we have
2(a− 1)2 − 2(d− 1)2 + 8(a− 1)|b|+ 4|b|2 ≥ 0 and so

(2(a− 1) + 2|b|)2 = 4(a− 1)2 + 8(a− 1)|b|+ 4|b|2 ≥ 2(a− 1)2 + 2(d− 1)2.

It follows that 2 + 2(a− 1) + 2(|b| − 1) ≥
√

2 (a− 1)
2

+ 2 (d− 1)
2
, which implies

∆ := 4 + 4(a− 1) + 4(|b| − 1)− 2

√
2
(

(a− 1)
2

+ (d− 1)
2
)
≥ 0.

Let

δ := 2 (|b| − 1)
2 − 2 + (a− 1)

2 − (d− 1)
2
.

We will show that δ ≥ 0. If b = 0, then d = a and so δ = 0. If |b| = 1, then d = 1.

Since |β| ≥ 2 +
√

2, we get a ≥ 4 and so δ = (a− 1)
2 − 2 > 0. If |b| > 1, then

2 (|b| − 1)
2 − 2 ≥ 0 and so δ ≥ 0. Thus δ + ∆ ≥ 0, which implies that

2
(
a2 + b2

)
≥ (a− 1)

2
+ (d− 1)

2
+ 2

√
2
(

(a− 1)
2

+ (d− 1)
2
)

+ 2

=

(√
(a− 1)

2
+ (d− 1)

2
+
√

2

)2

.

Hence
√

2
(√

a2 + b2 − 1
)
≥
√

(a− 1)
2

+ (d− 1)
2

= M.

Case 2. a < |b|: By the proof similar to Case 1, we get

√
2
(√

a2 + b2 − 1
)
>
√

(|b| − 1)2 + (d− 1)2 = M,

and so we have the Claim.
Since |β| ≥ 2 +

√
2, we have

4|β|2 − (12 + 4
√

2)|β|+ 8 + 4
√

2 = 4(|β| − 1)
(
|β| −

√
2− 2

)
≥ 0
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and so (2|β| − 3)2 ≥ 1 + 4
√

2(|β| − 1). It follows by the Claim that

|β| ≥
3 +

√
1 + 4

√
2 (|β| − 1)

2
≥ 3 +

√
1 + 4M

2
,

showing that

(3.10) |β| − 1 +
√

1 + 4M

2
≥ 1.

Since deg g(x) ≥ 1, we can express g(x) in the form

g(x) = ε
∏
i

(x− γi),

where ε is the leading coefficient of g(x) and the product is over the set of complex
zeros of g(x). By Lemma 3.5, any zero γ of g(x) satisfies either Re(γ) < 0 or

(3.11) |γ| < 1 +
√

1 + 4M

2
.

In the former case, since a ≥ 1, we have |β − γ| ≥ Re(β − γ) = a− Re(γ) > 1;
in the latter case, by (3.10) and (3.11), we obtain

|β − γ| ≥ |β| − |γ| > |β| − 1 +
√

1 + 4M

2
≥ 1.

Thus, we deduce

1 = |g(β)| = |ε|
∏
i

|β − γi| ≥
∏
i

|β − γi| > 1,

which is a contradiction. This completes the proof. 2

Let β = 1 + 5i and π = 1 + 10i, a Gaussian prime. We see that π = β2 + 25 and
f(x) = x2 + 25 = (x− 5i) (x+ 5i) so that f(x) is a reducible polynomial in Z[i][x].
Observe that 25 6∈ C′ = {0, 1, 2, 3, 4}.

The following two corollaries are immediate consequences of Theorem 3.17.

Corollary 3.18. Let β ∈ {1±3i, 3±i} or β = a+bi ∈ Z[i] be such that gcd(a, b) = 1,
a ≥ 1, and |β| ≥ 2 +

√
2. For a Gaussian prime π, if

π = αnβ
n + αn−1β

n−1 + · · ·+ α1β + α0,

is its base β(C′) representation with n ≥ 1 and Re(αn) ≥ 1 satisfying condition (ii)
of Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in

Z[i][x].
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Example 3.19. Let β = 4 + i and π = 92 + 65i. Then π is a Gaussian prime
because φ−1(92 + 65i) = 12689 is a rational prime. Since

92 + 65i = (4 + i)3 + 2(4 + i)2 + 2(4 + i) + 2,

by Corollary 3.18, f(x) = x3 + 2x2 + 2x+ 2 is irreducible in Z[i][x].

Corollary 3.20. Let β = a ∈ Z be such that a ≥ 4 and π a Gaussian prime. If

π = αna
n + αn−1a

n−1 + · · ·+ α1a+ α0,

is its base β(C) representation with n ≥ 1 and Re(αn) ≥ 1 satisfying condition (ii)
of Lemma 3.5, then f(x) = αnx

n + αn−1x
n−1 + · · · + α1x + α0 is irreducible in

Z[i][x].

If p is a rational prime with p ≡ 3(mod 4), b ≥ 4 a positive integer and

(3.12) p = anb
n + an−1b

n−1 + · · ·+ a1b+ a0,

where n ≥ 1, an 6= 0 and ai ∈ {0, 1, 2, . . . , b − 1} for all 0 ≤ i ≤ n. Then p is a
Gaussian prime and we see that (3.12) is a base b(C) representation. Using Corollary
3.20, the polynomial f(x) = anx

n+an−1x
n−1+ · · ·+a1x+a0 is irreducible in Z[i][x]

and so is irreducible in Z[x]. This is a generalization of A. Cohn in [2] for prime
numbers in Z that remain prime in Z[i].

Finally for the case β = 3, we prove:

Lemma 3.21. Let

f(x) = αnx
n + αn−1x

n−1 + · · ·+ α1x+ α0 ∈ C[x]

be such that n ≥ 3 and |αi| ≤ M (0 ≤ i ≤ n − 2) for some real number M ≥ 1. If
f(x) satisfies

(i) Re(αn) ≥ 1,Re(αn−1) ≥ 0, Im(αn−1) ≥ 0,Re(αn−2) ≥ 0, Im(αn−2) ≥ 0,

(ii) Re(αn−1) Im(αn) ≥ Re(αn) Im(αn−1),

(iii) Re(αn−2) Im(αn) ≥ Re(αn) Im(αn−2) and

(iv) Re(αn−2) Im(αn−1) ≥ Re(αn−1) Im(αn−2),

then for any complex zero α of f(x), if |argα| ≤ π/6, then |α| < M1/3 + 0.465572,
otherwise

Re(α) <

√
3

2

(
1 +
√

1 + 4M

2

)
.

Proof. Let α = a + bi be any complex zero of f(x). If |α| ≤ 1, then |α| <
M1/3 + 0.465572. Now assume that | argα| ≤ π/6 and |α| > 1. Then∣∣∣∣f(α)

αn

∣∣∣∣+
∣∣∣αn−3

α3

∣∣∣+ · · ·+
∣∣∣α0

αn

∣∣∣ ≥ ∣∣∣∣f(α)

αn

∣∣∣∣+
∣∣∣αn−3

α3
+ · · ·+ α0

αn

∣∣∣
≥
∣∣∣∣f(α)

αn
−
(αn−3

α3
+ · · ·+ α0

αn

)∣∣∣∣ .
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Since |α| > 1 and |αi| ≤M (0 ≤ i ≤ n− 2), we have

∣∣∣∣f(α)

αn

∣∣∣∣+
M

|α|2(|α| − 1)
>

∣∣∣∣f(α)

αn
−
(αn−3

α3
+ · · ·+ α0

αn

)∣∣∣∣
and so

(3.13)

∣∣∣∣f(α)

αn

∣∣∣∣ > ∣∣∣αn +
αn−1

α
+
αn−2

α2

∣∣∣− M

|α|2(|α| − 1)
.

Since | argα| ≤ π/6, we get

(3.14) a = |α| cos (argα) > 0

and

(3.15) a2 − b2 = |α|2 cos (2 argα) > 0.

For convenience, we set αn = an + bni, αn−1 = an−1 + bn−1i and αn−2 = an−2 +
bn−2i. Then

αn−1

α
=

(an−1a+ bn−1b) + (abn−1 − an−1b) i
|α|2

,

αn−2

α2
=

(
an−2

(
a2 − b2

)
+ 2abbn−2

)
+
(
bn−2

(
a2 − b2

)
− 2aban−2

)
i

|α|4
.

We now prove the following.

Claim.
∣∣∣αn +

αn−1

α
+
αn−2

α2

∣∣∣ ≥ 1.

Proof of the Claim. If b ≥ 0, then, by (i), (3.14) and (3.15), we have

∣∣∣αn +
αn−1

α
+
αn−2

α2

∣∣∣ ≥ Re
(
αn +

αn−1

α
+
αn−2

α2

)
= an +

an−1a+ bn−1b

|α|2
+
an−2

(
a2 − b2

)
+ 2abbn−2

|α|4
≥ an ≥ 1.

Now, we assume that b < 0. Using (i), (ii) and the same proof of Lemma 3.5, we
obtain ∣∣∣αn +

αn−1

α

∣∣∣2 ≥ 1,
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which implies

∣∣∣αn +
αn−1

α
+
αn−2

α2

∣∣∣2 =
(

Re
(
αn +

αn−1

α

)
+ Re

(αn−2

α2

))2(3.16)

+
(

Im
(
αn +

αn−1

α

)
+ Im

(αn−2

α2

))2
≥
[
Re
(
αn +

αn−1

α

)]2
+
[
Im
(
αn +

αn−1

α

)]2
+ 2 Re

(
αn +

αn−1

α

)
Re
(αn−2

α2

)
+ 2 Im

(
αn +

αn−1

α

)
Im
(αn−2

α2

)
=
∣∣∣αn +

αn−1

α

∣∣∣2 + 2 Re
(
αn +

αn−1

α

)
Re
(αn−2

α2

)
+ 2 Im

(
αn +

αn−1

α

)
Im
(αn−2

α2

)
≥ 1 + 2

[
Re (αn) Re

(αn−2

α2

)
+ Im (αn) Im

(αn−2

α2

)]
+ 2

[
Re
(αn−1

α

)
Re
(αn−2

α2

)
+ Im

(αn−1

α

)
Im
(αn−2

α2

)]
.

By using (i) and (3.15), we obtain

Re(αn) Re
(αn−2

α2

)
=

1

|α|4
(
anan−2

(
a2 − b2

)
+ 2anabbn−2

)
≥ 2

|α|4
anabbn−2

(3.17)

and

Im(αn) Im
(αn−2

α2

)
=

1

|α|4
(
bnbn−2

(
a2 − b2

)
− 2bnaban−2

)
≥ 2

|α|4
bna(−b)an−2,

(3.18)

provided bn ≥ 0. Note that if bn < 0, then the condition (iii) implies an−2 = bn−2 =
0 so that (3.18) holds for this case. Combining (3.17), (3.18) and using (iii), we
obtain

Re(αn) Re
(αn−2

α2

)
+ Im(αn) Im

(αn−2

α2

)
≥ 2a(−b)
|α|4

(an−2bn − anbn−2) ≥ 0.

(3.19)

By using (i), (3.14) and (3.15), we get

Re
(αn−1

α

)
Re
(αn−2

α2

)
=

1

|α|6
[(
an−1an−2a

(
a2 − b2

))
+
(
2a2ban−1bn−2

)]
(3.20)

+
1

|α|6
[(
bn−1an−2b

(
a2 − b2

))
+
(
2bn−1bn−2ab

2
)]

≥ 1

|α|6
[(

2a2ban−1bn−2
)

+
(
bn−1an−2b

(
a2 − b2

))]
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and

Im
(αn−1

α

)
Im
(αn−2

α2

)
=

1

|α|6
[(
bn−1bn−2a

(
a2 − b2

))
−
(
2a2bbn−1an−2

)](3.21)

− 1

|α|6
[(
an−1bn−2b

(
a2 − b2

))
+
(
2an−1an−2ab

2
)]

≥ 1

|α|6
[(

2a2(−b)bn−1an−2
)

+
(
an−1bn−2(−b)

(
a2 − b2

))]
.

Combining (3.20), (3.21) and using (3.15), (iv), we obtain

Re
(αn−1

α

)
Re
(αn−2

α2

)
+ Im

(αn−1

α

)
Im
(αn−2

α2

)
(3.22)

≥ 2a2(−b)
|α|6

(an−2bn−1 − an−1bn−2)

+
(−b)

(
a2 − b2

)
|α|6

(an−1bn−2 − an−2bn−1)

= (an−2bn−1 − an−1bn−2)
(−b)
|α|6

(
2a2 −

(
a2 − b2

))
= (an−2bn−1 − an−1bn−2)

(−b)
|α|6

(
a2 + b2

)
≥ 0.

Returning to (3.16) and using (3.19), (3.22), we conclude that∣∣∣αn +
αn−1

α
+
αn−2

α2

∣∣∣2 ≥ 1

and so we have the Claim.
By (3.13) and the Claim, we have∣∣∣∣f(α)

αn

∣∣∣∣ > 1− M

|α|2(|α| − 1)
=
|α|3 − |α|2 −M
|α|2(|α| − 1)

.

Let h(x) := x3 − x2 −M. Then h′(x) > 0 for x ∈ (−∞, 0)∪ (2/3,∞). Since M ≥ 1,
we obtain M1/3 + 0.465572 > 2/3 and

h
(
M1/3 + 0.465572

)
> 0.396716M2/3 − 0.280873M1/3 − 0.115842

=
(
M1/3

(
0.396716M1/3 − 0.280873

)
− 0.115842

)
> 0.

If |α| ≥M1/3 + 0.465572, then h(|α|) > 0. It follows that

0 =

∣∣∣∣f(α)

αn

∣∣∣∣ > |α|3 − |α|2 −M|α|2 (|α| − 1)
=

h(|α|)
|α|2 (|α| − 1)

,
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which is impossible. Thus, |α| < M1/3 + 0.465572.

For the case | argα| > π/6, by Lemma 3.5, we have either Re(α) < 0
or |α| < (1 +

√
1 + 4M)/2. If Re(α) < 0, then it is clear that Re(α) <

(
√

3/2)
(
(1 +

√
1 + 4M)/2

)
, while if |α| < (1 +

√
1 + 4M)/2, we obtain Re(α) =

|α| cos (argα) < |α| cosπ/6 < (
√

3/2)
(
(1 +

√
1 + 4M)/2

)
, as desired. 2

Theorem 3.22. If π is a Gaussian prime where base 3(C)-representation is

π = αn3n + αn−13n−1 + · · ·+ α13 + α0,

with n ≥ 3, Re(αn) ≥ 1 satisfying the conditions (ii)-(iv) of Lemma 3.21, then
f(x) = αnx

n + αn−1x
n−1 + · · ·+ α1x+ α0 is irreducible in Z[i][x].

Proof. Suppose that f(x) is reducible in Z[i][x]. As π = f(3) is a Gaussian prime,
if f(x) = g(x)h(x) for some positive degree polynomials g(x) and h(x) in Z[i][x],
then either |g(3)| = 1 or |h(3)| = 1. Without loss of generality, we may assume that
|g(3)| = 1.

Since deg g(x) ≥ 1, we can express g(x) in the form

g(x) = ε
∏
i

(x− γi),

where ε is the leading coefficient of g(x) and the product is over the set of complex
zeros of g(x). By Lemma 3.21 with M = 2

√
2, any zero γ of g(x) satisfies either

|γ| < (2
√

2)1/3 + 0.465572 ≈ 1.879572 or

Re(γ) <

√
3

2

(
1 +

√
1 + 8

√
2

2

)
≈ 1.952.

In the former case, we get |3 − γ| ≥ 3 − |γ| > 3 − 1.879572 > 1; in the latter case,
we obtain |3− γ| ≥ Re(3− γ) = 3− Re(γ) > 3− 1.952 > 1. Thus, we deduce

1 = |g(3)| = |ε|
∏
i

|3− γi| ≥
∏
i

|3− γi| > 1,

which is a contradiction. 2

Example 3.23 Let β = 3 and π = 36 + i. Then π is a Gaussian prime because
φ−1 (π) = 362 + 11 = 1297 is a rational prime. Since

36 + i = 33 + 32 + i,

the polynomial f(x) = x3 + x2 + i is irreducible in Z[i][x], by Theorem 3.22.
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