• Title/Summary/Keyword: input delay system

Search Result 378, Processing Time 0.028 seconds

Loop transfer recovery design for input-delayed systems (입력 시간지연 시스템의 루우프 전달복구 설계 기법)

  • 박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1201-1204
    • /
    • 1996
  • The previous results on LTR methods for time delay systems need the solution of the operator-type Riccati equation. In addition, it can be difficult to make the target loop shape representing the design specification. This paper proposes a new LTR method for input-delayed systems using well-established LTR method for non-delay systems. For doing this, a time delay margin is derived and the time delay of the input-delayed systems is assumed less than equal to the time delay margin. A simple example is presented for illustrations.

  • PDF

Making Robust Stochastic Stabilizer for Uncertain T-S fuzzy Systems with Input Delay (입력지연을 갖는 불확실 T-S 퍼지 시스템의 강인 디지털 확률적 안정화기 설계)

  • 이호재;박진배;김정찬;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.321-324
    • /
    • 2003
  • This paper discusses a robust stochastic stabilization of uncertain Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretixzd T-S fuzzy system is represented by a uncertain discrete-time T-S fuzy system with jumping parameters. The robust stochastic stabilizibility of the uncertain jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs).

  • PDF

MAC for MIMO Nonlinear System with Delayed Input (시간지연 MIMO 비선형시스템의 MAC 제어기 설계)

  • Zhang, Yuanliang;Kim, Hong-Chul;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • This paper proposes a digital controller for a nonlinear multi-input/multi-output(MIMO) system with time-delayed input. A nonlinear system with multi-input time delay is discretized using Taylor's discretization method, and the discretized system can be converted into a general nonlinear system. Consequently, general nonlinear controller synthesis can be applied to the discretized time-delay system We adopted MAC controller synthesis and verified the performance of the proposed method by conducting computer simulations. The results of the simulation showed that the proposed controller synthesis performs well and the proposed method is useful for controlling a nonlinear time-delay system.

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

Construction of a robust tracking system with N-th sampling delay

  • Inooka, Hikaru;Ichirou, Komatsu Ken
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.5-87
    • /
    • 2001
  • In the past, we presented the tracking system with one sampling delay. In this paper, first we propose a tracking system with N-th sampling delay, in the case where an input-output pulse transfer function of a plant Z$\_$-N/. Secondly we propose a system configuration converting an input-output pulse transfer function of a plant into Z$\_$-N/ with the inverse system of the plant. Moreover, the proposed tracking system configuration is applied to an actual Ball and Beam system and good results are obtained.

  • PDF

Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays

  • Park, J.H.;J. Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.82.1-82
    • /
    • 2001
  • It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which is unstable and inaccurate. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input interval. That means the entire system has ...

  • PDF

Hankel approximation of commensurate input delay systems (복수 입력 시간지연 시스템의 한켈 근사화)

  • 황이철;태전쾌인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1452-1455
    • /
    • 1997
  • This paper studies the problem of approximating commensurate input delay sustems by finite dimensional systems based on the Hankel singular values. I is shown that the Gankel singular values are solutions a trancendental equation and the Hankel singular vectors are obtained form the kernel of the matrix. The computaioin is carried out in state spae framework. Once singular values and vectors are calcualted, finite dimensional approximated systems are constructed using stadnard linear system computational tools. An example is included.

  • PDF

Sliding Mode Control for Time-delay System using Virtual State (가상 상태를 이용한 시간 지연 시스템의 슬라이딩 모드 제어)

  • 송영삼;권성하;박승규;오도창;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.341-341
    • /
    • 2000
  • This paper presents a sliding mode control(SMC) design method for single input linear systems with uncertainties and time delay in the state. We define a sliding surface for the augmented system with a virtual state which is defined from the nominal system. We make a virtual state from optimal control input using LOR(Linear Quadratic Regulator) and the states of the nominal system. We construct a controller that combines SMC with optimal controller. The proposed sliding mode controller stabilizes on the overall closed-loop system.

  • PDF

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

Synchronization of T-S Fuzzy Chaotic System with Time-Delay and Input Saturation (시간지연과 입력포화를 갖는 T-S 퍼지 카오스 시스템의 동기화)

  • Kim Jae-Hun;Shin Hyunseok;Kim Euntai;Park Mignon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.13-21
    • /
    • 2005
  • This paper presents a fuzzy model-based approach for synchronization of time-delay chaotic system with input saturation. Time-delay chaotic drive and response system is respectively represented by Takagi-Sugeno (T-S) fuzzy model. Specially, the response system contains input saturation. Using the unidirectional linear error feedback and the parallel distributed compensation (PDC) scheme, we design fuzzy chaotic synchronization system and analyze local stability for synchronization error dynamics. Since time-delay in the transmission channel always exists, we also take it into consideration. The sufficient condition for the local stability of the fuzzy synchronization system with input saturation and time-delay is derived by applying Lyapunov-Krasovskii theory and solving linear matrix inequalities (LMI's) problem. A numerical example is given to demonstrate the validity of the proposed approach.