• Title/Summary/Keyword: injective module.

Search Result 103, Processing Time 0.02 seconds

A NOTE ON PROJECTIVE AND INJECTIBVE AUTOMATA

  • Park, Chin-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.1
    • /
    • pp.79-88
    • /
    • 1996
  • In this paper we define a new short exact sequence of automata and we investigate module-like properties on projective and injective automata

THE PROJECTIVE MODULE P(2) OVER THE AFFINE COORDINATE RING OF THE 2-SPHERE S2

  • Kim, Sanghee
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.403-416
    • /
    • 2021
  • It is known that the rank 2 stably free syzygy module P(2) is not free. This algebraic fact was proved analytically, but this remarkable fact still lacks of a simple algebraic proof. The main purpose of this paper is to give a partially algebraic proof by making use of a theorem whose proof is quite topological, and the further properties of the module will be discussed.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

ON w-COPURE FLAT MODULES AND DIMENSION

  • Bouba, El Mehdi;Kim, Hwankoo;Tamekkante, Mohammed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.763-780
    • /
    • 2020
  • Let R be a commutative ring. An R-module M is said to be w-flat if Tor R1 (M, N) is GV -torsion for any R-module N. It is known that every flat module is w-flat, but the converse is not true in general. The w-flat dimension of a module is defined in terms of w-flat resolutions. In this paper, we study the w-flat dimension of an injective w-module. To do so, we introduce and study the so-called w-copure (resp., strongly w-copure) flat modules and the w-copure flat dimensions for modules and rings. The relations between the introduced dimensions and other (classical) homological dimensions are discussed. We also study change of rings theorems for the w-copure flat dimension in various contexts. Finally some illustrative examples regarding the introduced concepts are given.

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

ON THE EXTENSION DIMENSION OF MODULE CATEGORIES

  • Peng, Yeyang;Zhao, Tiwei
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1389-1406
    • /
    • 2020
  • Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.

ON π-V-RINGS AND INTERMEDIATE NORMALIZING EXTENSIONS

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • In this paper we study a ring over which every left module of finite length has an injective hull of finite length. We consider a ring that is a finite intermediate normalizing extension ring of such a ring. We also consider the subrings of such a ring.

  • PDF

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF