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Abstract. Let R be a commutative ring. An R-module M is said to
be w-flat if TorR1 (M,N) is GV -torsion for any R-module N . It is known

that every flat module is w-flat, but the converse is not true in general.

The w-flat dimension of a module is defined in terms of w-flat resolutions.
In this paper, we study the w-flat dimension of an injective w-module.

To do so, we introduce and study the so-called w-copure (resp., strongly

w-copure) flat modules and the w-copure flat dimensions for modules
and rings. The relations between the introduced dimensions and other

(classical) homological dimensions are discussed. We also study change

of rings theorems for the w-copure flat dimension in various contexts.
Finally some illustrative examples regarding the introduced concepts are

given.

1. Introduction

Throughout, all rings considered are commutative with unity and all modules
are unital. Let R be a ring and M be an R-module. As usual, we use pdR(M),
idR(M), and fdR(M) to denote, respectively, the classical projective dimension,
injective dimension, and flat dimension of M , and wdim(R) and gldim(R) to
denote, respectively, the weak and global homological dimensions of R.

Enochs and Jenda [8,9] introduced the notion of Gorenstein projective mod-
ules (G-projective modules for short), as an extension of the same notion to
modules that are not necessarily finitely generated, and the Gorenstein injec-
tive modules (G-injective modules for short) as a dual notion of Gorenstein
projective modules. To complete the analogy with the classical modules in the
homological theory, Enochs, Jenda, and Torrecillas [10] introduced the Goren-
stein flat modules (G-flat modules for short). Recall that an R-module M
is called Gorenstein flat, if there exists an exact sequence of flat R-modules
F : · · · → F1 → F0 → F 0 → F 1 → · · · such that M ∼= Im (F0 → F 0) and such
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that the functor − ⊗R I leaves F exact whenever I is an injective R-module.
The complex F is called a complete flat resolution. The Gorenstein flat dimen-
sion is defined in terms of Gorenstein flat resolutions, and denoted by Gfd (−)
[14].

In [2], the authors defined the weak Gorenstein global dimension of a ring R
to be

wGgldim(R) = sup{GfdR(M) |M is an R-module}.
It is proved (in [17, Theorem 2.12]) that, for any ring R, we have

wGgldim(R) = sup{fdR(E) | E is an injective R-module}.

The weak Gorenstein global dimension of a ring R is well studied, by N. Ding
and J. Chen (1993), in [5] under the name IFD(R). Another approach of the
IFD(R) was also done by considering the (strongly) copure flat modules. Re-
call that an R-module M is called copure flat if TorR1 (E,M) = 0 for any injec-
tive R-module E, and M is said to be strongly copure flat if TorRi (E,M) = 0 for
any injective R-modules E and any i ≥ 1 [7]. Copure flat modules and strongly
copure flat modules were discovered when studying flat preenvelopes. Let M
be an R-module. The copure flat dimension of M [7], denoted by cfdR(M),
is the smallest integer n > 0 such that TorRn+i(E,M) = 0 for any injective
R-module E and any integer i ≥ 1. If no such n exists, then cfdR(M) = ∞.
The copure flat dimension of a ring R [11], denoted by cfD(R), is defined to
be the supremum of copure flat dimensions of R-modules. It is proved that
cfD(R) = IFD(R) ([11, Theorem 3.8]).

Since the concept of semi-divisorial modules, which generalizes both diviso-
rial modules and injective modules, was introduced by Glaz and Vasconcelos
([13]) and was modified to allow the semi-divisorial closure (or w-closure) by
the second author, the so-called w-operation has proved to be useful in the
study of multiplicative ideal theory and module theory. The introduction of
the w-operation in the class of flat modules has been successful, see for instance
[1, 16, 19, 21, 23, 25]. The notion of w-flat modules appeared first in [19] when
R is a domain and was extended to arbitrary commutative rings in [16].

Let J be an ideal of R. Following [30], J is called a Glaz-Vasconcelos ideal
(a GV -ideal for short) if J is finitely generated and the natural homomorphism
ϕ : R → J∗ = HomR(J,R) is an isomorphism. Let M be an R-module and
define

torGV (M) = {x ∈M | Jx = 0 for some J ∈ GV (R)},
where GV (R) is the set of GV -ideals of R. It is clear that torGV (M) is a
submodule of M . Now M is said to be GV -torsion (resp., GV -torsion-free) if
torGV (M) = M (resp., torGV (M) = 0). A GV -torsion-free module M is called
a w-module if Ext1R(R/J,M) = 0 for any J ∈ GV (R). Projective modules and
reflexive modules are w-modules. In the recent paper [31], it was shown that
flat modules are w-modules. The notion of w-modules was introduced firstly
over a domain [24] in the study of Strong Mori domains and was extended to
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commutative rings with zero divisors in [30]. Let w-Max(R) denote the set
of maximal w-ideals of R, i.e., w-ideals of R maximal among proper integral
w-ideals of R. Following [30, Proposition 3.8], every maximal w-ideal is prime.

For any GV -torsion-free module M ,

Mw := {x ∈ E(M) | Jx ⊆M for some J ∈ GV (R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M ,
where E(M) denotes the injective hull of M . It is clear that a GV -torsion-free
module M is a w-module if and only if Mw = M .

Let M and N be R-modules and f : M → N be a homomorphism. Following
[20], f is called a w-monomorphism (resp., w-epimorphism, w-isomorphism) if
fm : Mm → Nm is a monomorphism (resp., an epimorphism, an isomorphism)
for all m ∈ w-Max(R). An R-module M is called a w-flat module if the induced
map 1⊗ f : M ⊗A→M ⊗B is a w-monomorphism for any w-monomorphism
f : A → B. Certainly flat modules are w-flat, but the converse implication is
not true in general. Recently, modules of this type have received attention in
several papers in the literature (see for example [16,21,25]). Characterizations
of w-flat modules are given in [16, Theorem 3.3].

Lemma 1.1. Let R be a ring and M be an R-module. Then the following are
equivalent.

(1) M is w-flat.
(2) Mm is a flat Rm-module for all m ∈ w-Max(R).
(3) TorR1 (M,N) is GV -torsion for all R-modules N .
(4) TorRn (M,N) is GV -torsion for all R-modules N and all n ≥ 1.

In [25], the authors introduced and investigated the w-flat dimensions of
modules and rings. Let R be a ring and n be a nonnegative integer. We
say that an R-module M has w-flat dimension less or equal to n, denoted by
w-fdR(M) ≤ n, if TorRn+1(M,N) is a GV -torsion R-module for all R-modules
N . Hence, the w-weak global dimension of R is defined to be

w-wdim(R) = sup{w-fdR(M) |M is an R-module}.

In Section 2, we introduce and characterize the (strongly) w-copure flat
modules and the w-copure flat dimension of modules. We show then that the
w-copure flat dimension is a refinement of the w-flat dimension. Section 3 deals
with the w-copure flat dimension of rings. In Proposition 3.2, it is proved that
the w-copure flat dimension of a ring R is equal to the supremum of w-flat
dimensions of injective w-modules. The relations between the w-copure flat
dimension and the weak (Gorenstein) global dimension of a ring are discussed.
In Section 4, we also study change of rings theorems for the w-copure flat
dimension in various contexts. Some illustrative examples are given.

Any undefined terminology or notation is standard, as in [3, 13,23].
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2. The w-copure flat dimension of modules

We begin this section by introducing key concepts which will be used throu-
ghout the paper.

Definition 2.1. Let R be a ring and M be an R-module.

(1) M is called w-copure flat if TorR1 (E,M) is a GV -torsion R-module for
any injective w-module E, and M is said to be strongly w-copure flat
if TorRn (E,M) is a GV -torsion R-module for any injective w-module
E and any n ≥ 1.

(2) The w-copure flat dimension of M , denoted by w-cfdR(M), is defined
to be the smallest integer n ≥ 0 such that TorRn+i(E,M) is GV -torsion
for any injective w-module E and any i ≥ 1. If there is no such n, set
w-cfdR(M) =∞.

Obviously by Lemma 1.1, every w-flat module is strongly w-copure flat (and
so w-copure flat) and every copure flat (resp., strongly copure flat) is w-copure
flat (resp., strongly w-copure flat). Recall that a ring R is called a DW -ring
if every ideal of R is a w-ideal, or equivalently GV (R) = {R} [18]. In this
case, the only GV -torsion module is (0), and so over such a ring, copure flat
(resp., strongly copure flat) module and w-copure flat (resp., strongly w-copure
flat) coincide. Examples of DW -rings are Prüfer domains, domains with Krull
dimension one, and rings with Krull dimension zero.

Next we give an example of a strongly w-copure flat module which is not
w-flat.

Example 2.2. Let R be a QF-ring, but not semisimple. For example, R :=
k[X]/(X2), where k is a field. Then every flat module is projective and every
injective module is flat, and so every R-module is a strongly copure flat mod-
ule. Since R is not a semisimple ring, there exists an R-module which is not
flat. Thus every strongly copure flat R-module is not necessarily flat. Since
dim(R) = 0, R is a DW-ring. Thus every strongly w-copure flat R-module is
not necessarily w-flat.

Proposition 2.3. Let R be a ring and 0 → A → B → C → 0 be a w-exact
sequence of R-modules, where C is strongly w-copure flat. Then A is strongly
w-copure flat if and only if B is strongly w-copure flat.

Proof. Let E be an injective w-module and let i ≥ 1. By [23, Theorem 6.6.2],
the induced homomorphism TorRi (E,A) → TorRi (E,B) is a w-isomorphism.
Thus the assertion follows. �

Corollary 2.4. Let R be a ring and M be a GV -torsion-free R-module. Then
M is strongly w-copure flat if and only if Mw is strongly w-copure flat.

Proof. By [23, Proposition 6.2.5], Mw/M is GV -torsion, and so strongly w-
copure flat. Hence applying Proposition 2.3 to the short exact sequence 0 →
M →Mw →Mw/M → 0 gives the result. �
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Proposition 2.5. The following statements are equivalent for an R-module
M .

(1) M is strongly w-copure flat.
(2) Ext iR(L,HomR(M,E)) = 0 for any injective w-modules E and L, and

any integer i ≥ 1.
(3) M ⊗ F is strongly w-copure flat for any w-flat R-module F .
(4) M ⊗ F is strongly w-copure flat for any flat R-module F .
(5) If ξ : · · · → Fn → · · · → F1 → F0 → M → 0 is w-exact with each Fi

w-flat, then E ⊗ ξ remains w-exact for any injective w-module E.
(6) There exists a w-exact sequence ξ : · · · → Fn → · · · → F1 → F0 →

M → 0 with each Fi w-flat such that E ⊗ ξ remains w-exact for any
injective w-module E.

(7) If ξ : · · · → Fn → · · · → F1 → F0 → M → 0 is w-exact with each Fi
flat, then E ⊗ ξ remains w-exact for any injective w-module E.

(8) There exists a w-exact sequence ξ : · · · → Fn → · · · → F1 → F0 →
M → 0 with each Fi flat such that E ⊗ ξ remains w-exact for any
injective w-module E.

Proof. Let E be an injective w-module and A and B be any two R-modules.
By [12, Theorem 1.1.8], we have the following isomorphism

(2.1) Ext iR(A,HomR(B,E)) ∼= HomR(TorRi (A,B), E)

for any i ≥ 1.
(1) ⇒ (2) Let L be an arbitrary injective w-module. Since TorRn (L,M) is

GV -torsion, we have HomR(TorRi (L,M), E) = 0. By the isomorphism (2.1),
we have Ext iR(L,HomR(B,E)) = 0.

(2)⇒ (1) Again by the isomorphism (2.1), we have HomR(TorRi (L,M), E)
= 0. By [23, Exercise 6.22], TorRi (L,M) is GV -torsion. Thus M is strongly
w-copure flat.

(1)⇒ (4) Let E be an injective w-module. By [23, Theorem 3.4.10], we have
the natural isomorphism TorRi (E,M⊗RF ) ∼= TorRi (E,M)⊗RF for any i ≥ 1.
Since TorRi (E,M) is a GV -torsion module for any i ≥ 1, so is TorRi (E,M⊗RF )
for any i ≥ 1. Thus M ⊗ F is strongly w-copure flat.

(4)⇒ (3) Let E be an injective w-module. By Lemma 1.1, Fm is a flat Rm-
module, and so a flat R-module, for all m ∈ w-Max(R). Thus TorRi (E,M ⊗R
Fm) is a GV -torsion R-module. By [23, Proposition 6.2.18], TorRi (E,M⊗RFm)
is also a w-module. Thus TorRi (E,M⊗RFm) = 0. By the natural isomorphism
TorRi (E,M ⊗R F )m ∼= TorRi (E,M ⊗R Fm) = 0, we get that TorRi (E,M ⊗R F )
is GV -torsion. Thus M ⊗ F is strongly w-copure flat.

(3)⇒ (1) This follows immediately by taking F := R.
(1) ⇒ (5) Let ξ : · · · → Fn → · · · → F1 → F0 → M → 0 be a w-exact

sequence with each Fi flat. Set K0 := ker(F0 →M) and Ki := ker(Fi → Fi−1)
for any i ≥ 1. Then 0 → K0 → F0 → M → 0 and 0 → Ki → Fi → Ki−1 → 0
for any i ≥ 1 are w-exact. Let E be an injective w-module over R. Since
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TorR1 (E,M) is GV -torsion, E ⊗R − leaves the sequence 0 → K0 → F0 →
M → 0 w-exact. It follows from Proposition 2.3 that K0 is strongly w-copure
flat since F0 is w-flat. Then we can show that E ⊗ ξ leaves the sequence ξ
w-exact by repeating the same procedure.

(5)⇒ (7) This is trivial.
(7)⇒ (8) This follows immediately by taking a flat resolution of M .
(8)⇒ (6) This is trivial.
(6)⇒ (1) Let E be an injective w-module over R and consider the w-exact

sequence ξ : · · · → Fn → · · · → F1 → F0 → M → 0 of w-flat modules Fi
such that E ⊗ ξ remains w-exact. Set K0 := ker(F0 → M). Then there is
a w-exact sequence 0 → K0 → F0 → M → 0. Clearly E ⊗R − preserves
the w-exactness of this sequence. Hence TorR1 (E,M) is GV -torsion. Now by
induction, TorRi (E,M) is GV -torsion for any i ≥ 1. So M is strongly w-copure
flat. �

For the w-copure flat module, we can have the corresponding result. But we
omit its proof since it is easy and similar.

Proposition 2.6. The following statements are equivalent for an R-module
M .

(1) M is w-copure flat.
(2) Ext 1

R(L,HomR(M,E)) = 0 for any injective w-modules E and L.
(3) M ⊗ F is w-copure flat for any w-flat R-module F .
(4) M ⊗ F is w-copure flat for any flat R-module F .
(5) If ξ : 0 → A → F → M → 0 is w-exact with F w-flat, then E ⊗ ξ

remains w-exact for any injective w-module E.
(6) There exists a w-exact sequence ξ : 0 → A → F → M → 0 with F

w-flat such that E ⊗ ξ remains w-exact for any injective w-module E.
(7) If ξ : 0→ A→ F →M → 0 is w-exact with F flat, then E⊗ξ remains

w-exact for any injective w-module E.
(8) There exists a w-exact sequence ξ : 0→ A→ F →M → 0 with F flat

such that E ⊗ ξ remains w-exact for any injective w-module E.

Recall that an R-module M is called a strong w-module if Ext iR(C,M) = 0
for any GV -torsion module C and any i ≥ 1. See [26] for more results of strong
w-modules.

Proposition 2.7. The following statements are equivalent for an R-module
M .

(1) M is strongly w-copure flat.
(2) If 0 → N → E0 → E1 → · · · → En−1 → En → 0 is w-exact with

each Ei injective, then TorRi (N,M) is GV -torsion for any injective
w-module M and any i ≥ 1.

(3) If N is a strong w-module with idR(N) < ∞, then TorRi (N,M) is
GV -torsion for any i ≥ 1.
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Proof. (1) ⇒ (2) Let A := ker(En−1 → En). Then 0 → A → En−1 → En is a
w-exact sequence. By [23, Theorem 6.7.2], we have a w-exact sequence

TorRi+1(En,M)→ TorRi (A,M)→ TorRi (En−1,M).

Thus we get that TorRi (A,M) is GV -torsion. Then the assertion follows by
applying [23, Theorem 6.7.2] repeatedly.

(2)⇒ (3) Since N is a strong w-module with idR(N) <∞, by [26, Proposi-
tion 2.2] there exists an exact sequence

0→ N → E0 → E1 → · · · → En−1 → En → 0

such that each Ei is an injective w-module. Now the assertion follows by
hypothesis.

(3)⇒ (1) This is trivial since every injective w-module is a strong w-module.
�

Proposition 2.8. Let R be a ring. Then the class of all w-copure flat (resp.,
strongly w-copure flat) R-modules is closed under direct sums and direct sum-
mands.

Proof. As seen in [22, Lemma 0.1], it is clear that the set of GV -torsion modules
is closed under direct sums and direct summands. Hence our result follows
immediately from the definition of w-copure flat (resp., strongly w-copure flat)
modules. �

Before giving a functorial description of the w-copure flat dimension of mod-
ules, we need the following lemma, which is similar to [25, Lemma 2.2].

Lemma 2.9. Let E be an injective w-module over R and 0→ A→ F → C → 0
be a w-exact sequence of R-modules with F a strongly w-copure flat module.
Then the induced map TorRi+1(E,C) → TorRi (E,A) is a w-isomorphism for

any i ≥ 1. Hence for any i ≥ 1, TorRi+1(E,C) is GV -torsion if and only if so

is TorRi (E,A).

Proposition 2.10. Let R be a ring, M be an R-module, and n be a nonnegative
integer. Then the following statements are equivalent.

(1) w-cfdR(M) ≤ n.
(2) TorRn+i(E,M) is GV -torsion for any injective w-module E and any

i ≥ 1.
(3) TorRn+i(N,M) is GV -torsion for any strong w-module N with idR(N)

<∞ and any i ≥ 1.
(4) If a sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is

exact with F0, . . . , Fn−1 strongly w-copure flat, then Fn is also strongly
w-copure flat.

(5) If a sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is exact
with F0, . . . , Fn−1 flat, then Fn is strongly w-copure flat.
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(6) If a sequence 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 is w-
exact with F0, . . . , Fn−1 strongly w-copure flat, then Fn is also strongly
w-copure flat.

(7) If a sequence 0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0 is w-exact
with F0, . . . , Fn−1 flat, then Fn is strongly w-copure flat.

Proof. (1) ⇔ (2) This is just the definition of the w-copure flat dimension of
modules.

(1)⇔ (3) This follows from Proposition 2.7.
(2) ⇔ (5) Let 0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0 be any exact

sequence with F0, . . . , Fn−1 flat. Then Fn is strongly w-copure flat if and only
if TorRn+i(E,M) ∼= TorRi (E,Fn) is GV -torsion for any injective module E and
any i ≥ 1.

(6)⇒ (7)⇒ (5) and (6)⇒ (4)⇒ (5) These are trivial.
(2) ⇒ (6) Let E be an injective w-module over R. Set Ln := Fn and

Li := Im (Fi → Fi−1) for i = 1, . . . , n−1. Then both 0→ Li+1 → Fi → Li → 0
and 0→ L1 → F0 →M → 0 are w-exact. By using Lemma 2.9 repeatedly, we
see that for any k ≥ 1, TorRk (E,Fn) is GV -torsion if and only if TorRn+k(E,M)

is GV -torsion. By hypothesis, TorRk (E,Fn) is GV -torsion for any k ≥ 1. Thus
Fn is strongly w-copure flat. �

Proposition 2.11. Let R be a ring and M be an R-module. Then:

(1) w-cfdR(M) ≤ w-fdR(M) with equality if w-fdR(M) <∞.
(2) If M is a w-copure flat R-module and w-fdR(M) ≤ 1, then M is w-flat.

Proof. (1) It suffices to prove that if n := w-fdR(M) <∞, then every strongly
w-copure flat module is w-flat, i.e., n = 0. Let M be a strongly w-copure flat
module. Assume on the contrary that n > 0. Then there exists an R-module
N such that TorRn (N,M) is not GV -torsion. Without loss of generality, we
assume that N is GV -torsion free. Thus E := E(N) is an injective w-module.
Hence the exact sequence

0→ N → E → E/N → 0

gives rise to the exactness of the sequence

(2.2) TorRn+1(E/N,M)→ TorRn (N,M)→ TorRn (E,M).

The left term of (2.2) is a GV -torsion module since w-fdR(M) = n, and the
right term of (2.2) is a GV -torsion module since M is strongly w-copure flat.
Hence by [22, Lemma 0.1], TorRn (N,M) is a GV -torsion module, a contradic-
tion. Thus n = 0.

(2) Since w-fdR(M) ≤ 1, M is a strongly w-copure flat module. Now the
assertion follows by (1). �

The next example shows that every strongly w-copure flat module is not
necessarily strongly copure flat.
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Example 2.12. Let (R,m) be a regular local ring with gldim(R) = 2. Then
fdR(R/m) = 2, and hence fdR(m) = 1. By [25], every strongly copure flat
module is a flat module. Thus cfdR(m) = 1. Since R is a UFD, and hence
is a PvMD. By [25], w-wdim(R) ≥ 1. By Proposition 2.11, every strongly w-
copure flat module is w-flat, and so w-cfdR(m) = 0. Therefore every strongly
w-copure flat module is not necessarily strongly copure flat.

The proof of the next result is standard homological algebra. Thus we omit
its proof.

Proposition 2.13. Let R be a ring and 0 → A → B → C → 0 be a w-exact
sequence of R-modules. If two of w-cfdR(A), w-cfdR(B), and w-cfdR(C) are
finite, so is the third. Moreover,

(1) w-cfdR(B) ≤ sup{w-cfdR(A), w-cfdR(C)}.
(2) w-cfdR(A) ≤ sup{w-cfdR(B), w-cfdR(C)− 1}.
(3) w-cfdR(C) ≤ sup{w-cfdR(B), w-cfdR(A) + 1}.

Corollary 2.14. Let R be a ring and 0 → A → B → C → 0 be a w-exact
sequence of R-modules, where B is strongly w-copure flat. Then either the three
modules are strongly w-copure flat or w-cfdR(C) = w-cfdR(A) + 1.

The next result characterizes coherent rings with finite weak Gorenstein
global dimension over which every strongly w-copure flat module is strongly
copure flat.

Proposition 2.15. Let R be a coherent ring with finite weak Gorenstein global
dimension. Then the following statements are equivalent.

(1) Every strongly w-copure flat R-module is strongly copure flat.
(2) R is a DW -ring.

Proof. (1) ⇒ (2) Let J be a GV -ideal. Then by [23, Theorem 6.2.6] R/J
is a GV -torsion R-module, and so by [23, Corollary 6.7.4(1)] R/J is a w-
flat R-module. Hence by hypothesis, R/J is strongly copure flat. Then by
[11, Theorem 2.12], R/J is Gorenstein flat. Thus R/J is a submodule of a
flat R-module, and so it is a GV -torsion free R-module (as a submodule of a
w-module). Then R/J = (0), and so R = J . Consequently R is a DW -ring.

(2)⇒ (1) This is clear. �

3. The w-copure flat dimension of rings

We start with the following definition.

Definition 3.1. Let R be a ring. The w-copure flat dimension of R, denoted
by w-cfD (R), is defined as the supremum of the w-copure flat dimensions of
R-modules.

Proposition 3.2. Let R be a ring and n be a nonnegative integer. Then the
following statements are equivalent.
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(1) w-cfD (R) ≤ n.
(2) For any R-module M and any exact sequence 0→ Pn → Pn−1 → · · · →

P1 → P0 → M → 0 with P0, P1, . . . , Pn−1 projective, we have Pn is a
w-copure flat module.

(3) w-fdR(E) ≤ n for any injective w-module E.
(4) Every GV-torsion-free R-module can be embedded in an R-module with

w-flat dimension at most n.
(5) Every strong w-module can be embedded in an R-module with w-flat

dimension at most n.
(6) w-fdR (HomR(F,E)) ≤ n for any w-flat R-module F and any injective

w-module E.
(7) w-fdR (HomR(F,E)) ≤ n for any flat R-module F and any injective

w-module E.
(8) idR (HomR(L,E)) ≤ n for any injective w-modules E and L.

Proof. (1)⇒ (2) This follows from Proposition 2.10.
(2)⇒ (3) Let E be an injective w-module. Consider an arbitrary R-module

M and pick an exact sequence 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0
such that P0, . . . , Pn−1 are projective. By hypothesis, Pn is w-copure flat,
and then TorRn+1(E,M) ∼= TorR1 (E,Pn) is a GV -torsion R-module. Hence by
[25, Proposition 2.3], we have w-fdR(E) ≤ n.

(3) ⇒ (1) Let M be an R-module and E be any injective w-module. Since
w-fdR(E) ≤ n, we obtain that TorRn+1(E,M) is a GV -torsion R-module. By
Proposition 2.10, w-cfdR(M) ≤ n. Thus w-cfD (R) ≤ n.

(3) ⇒ (4) Let N be a GV -torsion-free module. Then E(N) is an injective
w-module. Now the assertion follows immediately.

(4)⇒ (5) This is trivial.
(5) ⇒ (3) Let E be an injective w-module. By hypothesis, E can be em-

bedded in an R-module L with w-fdR(L) ≤ n. Thus we have L = E ⊕ B,
where B is a submodule of L. By using [25, Proposition 2.3] and the fact
that the set of GV -torsion R-modules is closed under direct sums and direct
summands, we can prove easily that for any two R-modules A and B, we have
w-fdR(A⊕B) = sup{w-fdR(A), w-fdR(B)}. Thus we have w-fdR(E) ≤ n.

(3)⇒ (6) Let A be an R-module. Since F is a w-flat module, TorR1 (A,F ) is
GV -torsion. By the isomorphism (2.1), we have that Ext 1

R(A,HomR(F,E)) =
0. Hence HomR(F,E) is an injective module. Therefore it follows from the
hypothesis that w-fdR (HomR(F,E)) ≤ n.

(6)⇒ (7) This is trivial.
(7)⇒ (3) This follows by letting F = R.
(1) ⇒ (8) Let M be any R-module and E,L be injective w-modules. Thus

by using the isomorphism (2.1), Proposition 2.10, and [22, Lemma 0.1], we have

Ext n+iR (M,HomR(L,E)) ∼= HomR

(
TorRn+i(M,L), E

)
= 0

for any i ≥ 1, and so idR (HomR(E,L)) ≤ n.
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(8) ⇒ (1) Let M be an R-module and E,L be injective w-modules. Since
idR (HomR(L,E)) ≤ n, it follows from the isomorphism (2.1) that

HomR(TorRn+i(L,M), E) ∼= Ext n+iR (M,HomR(L,E)) = 0

for any i ≥ 1. By [23, Exercise 6.22], TorRn+i(L,M) is a GV -torsion module
for any i ≥ 1. Thus w-cfdR(M) ≤ n. Hence w-cfD (R) ≤ n. �

Corollary 3.3. Let R be a ring. Then

w-cfD (R) = sup{w-fdR(E) | E is an injective w-module}.

Proof. This follows immediately from Proposition 3.2. �

Corollary 3.4. Let R be a ring. Then

sup{w-fdR(M) | w-fdR(M) <∞} ≤ w-cfD (R) ≤ w-wdim (R).

Moreover,

(1) If w-wdim (R) <∞, then the two above inequalities become equalities.
(2) If w-cfD (R) <∞, then

sup{w-fdR(M) | w-fdR(M) <∞} = w-cfD (R).

Proof. (1) This follows from Proposition 2.11.
(2) By Corollary 3.3, there is an injective w-module E such that w-fdR(E) =

w-cfD (R) <∞. Then w-cfD (R) ≤ sup{w-fdR(M) | w-fdR(M) <∞}, and so
we have the desired equality. �

Following [4], we say that a ring R is an IF ring if every injective R-module
is flat. In order to characterize the rings of w-copure flat dimension 0, we
introduce a new class of rings, which is a w-version of IF rings.

Definition 3.5. A ring R is called a w-IF-ring if every injective w-module is
w-flat.

Corollary 3.6. Let R be a ring. Then R is a w-IF-ring if and only if w-cfD (R)
= 0.

Proposition 3.7. Let R be a ring. Then wGgldim (R) ≤ 1 if and only if R is
DW and w-cfD (R) ≤ 1.

Proof. As seen in [17, Theorem 2.12] and Proposition 3.2, it is clear that
w-cfD (R) ≤ wGgldim (R) with equality if R is a DW -ring. Hence it suf-
fices to prove that if wGgldim (R) ≤ 1, then R is DW . Let J ∈ GV (R). Since
wGgldim (R) ≤ 1, J is Gorenstein flat. Then there exists a short exact se-
quence 0 → J → F → G → 0 where F is flat and G is Gorenstein flat. Since
F is a w-module and G is a GV -torsion-free module (as a submodule of a flat
module), it follows from [15, Lemma 3.2] that J is a w-module. Hence Jw = J .
On the other hand, by [30, Proposition 3.5] Jw = R. Thus GV (R) = {R},
which means that R is a DW -ring. �
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Corollary 3.8. A ring R is IF if and only if it is a DW -ring and every module
is (strongly) w-copure flat.

Proof. Recall that R is IF if and only if wGgldim (R) = 0. Hence the assertion
follows from Proposition 3.7. �

Proposition 3.9. A ring R is von Neumann regular if and only if every R-
module is (strongly) w-copure flat and w-wdim (R) <∞.

Proof. If R is von Neumann regular, then w-wdim (R) = 0 and every R-module
is flat (and so strongly w-copure flat). Conversely, if every R-module is w-
copure flat, then by the equivalence of (1) and (2) in Proposition 3.2 we have
w-cfD (R) = 0. Now, since w-wdim (R) < ∞, we get w-wdim (R) = 0 (by
Corollary 3.4). Then by [21, Theorem 4.4], R is von Neumann regular. �

Proposition 3.10. The following statements are equivalent for a domain R.

(1) R is a field.
(2) Every R-module is strongly w-copure flat.
(3) Every R-module is w-copure flat.
(4) Every cyclic R-module is strongly w-copure flat.
(5) Every cyclic R-module is w-copure flat.
(6) w-cfD (R) = 0.

Proof. (1)⇒ (2)⇒ (4) These are clear.
(4) ⇒ (1) Let a be a nonzero element of R. Clearly w-fdR(R/aR) ≤

fdR(R/aR) ≤ pdR(R/aR) ≤ 1 since R is a domain. Thus R/aR is w-flat
(by Proposition 2.11). By applying [21, Proposition 2.2] to the exact sequence
0 → aR → R → R/aR → 0, we obtain that (a)w = (a2)w. Hence a ∈ (a2)w.
Thus by [21, Theorem 4.4], R is von Neumann regular. Consequently R is a
field since it is a domain.

(1) ⇒ (3) ⇒ (5) ⇒ (1) These are similar to the “strongly w-copure flat
dimension” case.

(1) ⇔ (6) This follows immediately by the definition of the w-coupre flat
dimension of a ring. �

Next we characterize the rings of w-copure flat dimension at most one.

Proposition 3.11. The following conditions are equivalent for a ring R.

(1) w-cfD (R) ≤ 1.
(2) Every submodule of a w-copure flat R-module is strongly w-copure flat.
(3) Every submodule of a w-copure flat R-module is w-copure flat.

Proof. (1)⇒ (2) Let M be a w-copure flat module and let N be a submodule
of M . Let E be an injective w-module and n ≥ 1 be an integer. We have the
following exact sequence of R-modules:

(3.1) TorRi+1(E,M/N)→ TorRi (E,N)→ TorRi (E,M).
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The right term of (3.1) is always GV -torsion since M is w-flat and w-fd (E) ≤ 1
by Proposition 2.11. Also the left term of (3.1) is GV -torsion since w-fd (E) ≤
1. Thus TorRi (E,N) is GV -torsion for any i ≥ 1, which means that N is
strongly w-copure flat.

(2)⇒ (3) This is trivial.
(3) ⇒ (1) By hypothesis, every submodule of a projective R-module is w-

copure flat. Hence the assertion follows from (2)⇒ (1) in Proposition 3.2. �

Proposition 3.12. Let R be a coherent ring. Then w-cfD (R) ≤ 1 if and only
if every w-copure flat is strongly w-copure flat.

Proof. (⇒) This follows from Proposition 3.11.
(⇐) Let M be an R-module. Pick a short exact sequence 0 → K → P →

M → 0 with P projective. Note that K has a flat preenvelope f : K → F
since R is coherent [29, Theorem 2.5.1]. So f is a monomorphism, and we get
an exact sequence 0 → K → F → L → 0, where L is a copure flat module
(by [6, Corollary 3.2]). Then L is strongly w-copure flat, and so is K. Then
w-cfdR(M) ≤ 1, and so w-cfD (R) ≤ 1. �

Now we consider the w-copure flat dimension and w-weak global dimension
of finite product rings.

Proposition 3.13. Let R1 and R2 be two rings, M1 and M2 be an R1-module
and an R2-module respectively. Set R = R1 ×R2 and M = M1 ×M2.

(1) Every R1-module (resp., R2-module) which is GV -torsion as an R-
module is a GV -torsion R1-module (resp., R2-module). If M1 (resp.,
M2) is a GV -torsion R1-module (resp., R2-module), then M is a GV -
torsion R-module.

(2) TorR1
n+i(M1, E) ∼= TorR1

n+i(M ⊗R R1, E) ∼= TorRn+i(M,E) for any i ≥
1. In particular, M is a strongly w-copure flat R-module if and only
if M1 and M2 are strongly w-copure flat R1-module and R2-module,
respectively.

(3) w-cfD (R) = sup{w-cfD (R1), w-cfD (R2)}.
(4) w-fdR(M) = sup{w-fdR1

(M1), w-fdR2
(M2)} and

w-wdim (R) = sup{w-wdim (R1), w-wdim (R2)}.

Proof. Note that any R-module N has a decomposition N = N1 ×N2, where
N1 (resp., N2) is an R1-module (resp., R2-module). Now the assertion follows
from the facts that

(a) HomR(M,N) ∼= HomR1
(M1, N1)×HomR2

(M2, N2),
(b) Ext kR(M,N) ∼= Ext kR1

(M1, N1)× Ext kR2
(M2, N2) for all k ≥ 1,

(c) M ⊗R N ∼= (M1 ⊗R1
N1)× (M2 ⊗R2

N2), and

(d) TorRk (M,N) ∼= TorR1

k (M1, N1)× TorR2

k (M2, N2) for all k ≥ 1. �

Example 3.14. Let (R,m) be a regular local ring with gldim(R) = 2 and R′

be an IF ring which is not von Neumann regular (take for example the ring
Z/4Z). Then
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(1) 1 = w-wdim (R) = w-cfD (R) < wdim (R) = wGgldim (R) = 2.
(2) w-cfD (R′) = wGgldim (R′) = 0 and w-wdim (R′) = wdim (R′) =∞.
(3) w-cfD (R×R′) = 1 < wGgldim (R) = 2 and w-wdim (R) = wdim (R) =
∞.

Proof. (1) It is known that R is a Krull domain, and so a PvMD. Thus by [25,
Theorem 3.5] and [21, Theorem 4.4], w-wdim (R) = 1. Hence by using Propo-
sition 3.4, w-cfD (R) = 1. Moreover, wGgldim (R) = IFD(R) = wdim (R) = 2
since wdim (R) = 2 <∞ (by [5, Corollary 3.3]).

(2) By [5, Corollary 3.3], wdim (R′) = ∞ and wGgldim (R′) = IFD(R) =
0. On the other hand, w-cfD (R′) = wGgldim (R′) = 0 and w-wdim (R′) =
wdim (R′) =∞. Now by Corollary 3.8, w-cfD (R) = 0 and R is DW , and then
w-wdim (R′) =∞.

(3) This follows from Proposition 3.13 and [17, Theorem 3.1]. �

4. Change of rings theorems for the w-copure flat dimension

In this section, we study change of rings theorems for the w-copure flat
dimension in various contexts. Although some results of this section are anal-
ogous to those in [28], we need a new concept to give their proofs as follows.

Definition 4.1. (1) Let φ : R → T be a ring homomorphism. Then T is
said to have property (Bφ) if the following property is satisfied:
(Bφ) Let N be a T -module. If N is a GV-torsion R-module, then N is
also a GV-torsion T -module.

(2) Let R ⊆ T be a ring extension. Use φ : R→ T to denote the embedding
map. Then this ring extension said to have property (B) if T has
property (Bφ).

(3) Let a ∈ R. Use φ : R → R/aR to denote the natural homomorphism.
Then R is said to have property (Ba) if R/aR has property (Bφ).

Proposition 4.2. Let φ : R → T be a ring homomorphism such that T has
property Bφ and let N be a T -module. Then

(1) If N is a GV -torsion-free T -module, then N is a GV -torsion-free R-
module.

(2) If N is an injective w-module over T , then N is a strong w-module
over R.

Proof. (1) Set A := {x ∈ N | there exists J ∈ GV (R) such that Jx = 0}.
Then it is easy to see that A is a T -submodule of N . Since A is a GV -torsion
R-module, it follows from property (Bφ) that A is a GV -torsion T -module.
Since N is a GV -torsion-free T -module, we have A = 0. Therefore N is also a
GV -torsion-free R-module.

(2) Let C be a GV -torsion R-module. Then T ⊗R C is a GV -torsion R-
module. By hypothesis, T ⊗R C is a GV -torsion T -module. By [23, Theorem
3.4.11], Ext kR(C,N) ∼= Hom T (TorRk (T,C), E) = 0. Thus N is a strong w-
module over R. �
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Recall that a ring extension R ⊆ T is said to be w-linked if T as an R-module
is a w-module. For example, the polynomial extension R ⊂ R[X] is w-linked.
Let a ∈ R. Write R = R/aR. Let J be an ideal of R. Write J = {b | b ∈ J},
i.e., J = (J + aR)/aR.

Proposition 4.3. (1) If a ring extension R ⊆ T is w-linked, then T has
property (B).

(2) Let S be a multiplicative subset of a ring R. Use φ : R→ RS to denote
the natural homomorphism. Then RS has property (Bφ).

(3) Let a ∈ R. If J ∈ GV (R) for any J ∈ GV (R), then R has property
(Ba).

Proof. (1) Let N be a T -module, which is also a GV -torsion R-module. Let
x ∈ N . Then there exists J ∈ GV (R) such that Jx = 0. Hence JTx = 0. By
[27, Lemma 3.3], JT ∈ GV (T ). Then N is a GV -torsion T -module. Therefore
T has property (B).

(2) Let N be an RS-module, which is also a GV -torsion R-module. Let
x ∈ N . Then there exists J ∈ GV (R) such that Jx = 0. By [23, Theorem
6.8.31], JS ∈ GV (RS). Hence JSx = 0. Then N is a GV -torsion RS-module.
Therefore RS has property (Bφ).

(3) Let N be an R-module, which is also a GV -torsion R-module. Let x ∈ N .
Then there exists J ∈ GV (R) such that Jx = 0. Hence Jx = 0. By hypothesis,
J ∈ GV (R). Then N is a GV -torsion R-module. Therefore R has property
(Ba). �

Next we state the main theorem of this section.

Theorem 4.4. Let φ : R→ T be a ring homomorphism such that fdRT <∞
and T has property (Bφ). If M is a strongly w-copure flat R-module and
TorRk (T,M) = 0 for any k ≥ 1, then T ⊗R M is a strongly w-copure flat
T -module.

Proof. Let N be an injective w-module over T and let 0→ A→ F → M → 0
be an R-exact sequence, where F is a flat R-module. Since TorR1 (T,M) = 0,
we have the following exact sequence:

0→ T ⊗R A→ T ⊗R F → T ⊗RM → 0.

Thus we have the following commutative diagram with two exact rows:

0 // X // TorR1 (N,M) //

θ

��

N ⊗R A //

��

N ⊗R F

��
0 // Tor T1 (N,T ⊗R M) // N ⊗T (T ⊗R A) // N ⊗T (T ⊗R F )

Thus θ is an epimorphism. By [23, Exercise 3.15], idRN < ∞. By Proposi-
tion 4.2, N is a strong w-module. Thus it follows from Proposition 2.7 that
TorR1 (N,M) is a GV -torsion R-module. Now it follows from property (Bφ) that
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Tor T1 (N,T ⊗R M) is a GV -torsion T -module. Note that A is also a strongly
w-pure flat R-module by Proposition 2.3. By “dimension shifting”, we have
Tor Tk (N,T ⊗RM) is a GV -torsion T -module for any k > 1. Therefore T ⊗RM
is a strongly w-copure flat T -module. �

Let R be a ring, M be an R-module, and a ∈ R. Then we say that M is
a-torsion-free if am = 0 for m ∈M implies that m = 0.

Corollary 4.5. Let M be a strongly w-copure flat R-module. Then

(1) M [X] is a strongly w-copure flat R[X]-module.
(2) If S is a multiplicative subset of R, then MS is a strongly w-copure flat

RS-module.
(3) Let a ∈ R, which is not a zero-divisor of both R and M . If R has

property (Ba), then M/aM is a strongly w-copure flat R/aR-module.

Proof. (1) and (2) follow by setting T := R[X] and T := RS respectively in
Theorem 4.4.

(3) Since M is a-torsion-free, we get that TorR1 (R/aR,M) = 0 by [28,
Lemma 1]. Now the assertion follows by applying Theorem 4.4. �

Set Nw := {f ∈ R[X] | c(f)w = R}, where c(f) denotes the content of f .
Let R{X} := R[X]Nw and M{X} := M [X]Nw be the w-Nagata ring of R and
the w-Nagata module of M respectively.

Proposition 4.6. Let M be a strongly w-copure flat R-module. Then

(1) M{X} is a strongly copure flat R{X}-module.
(2) Mm is a strongly copure flat Rm -module for any maximal w-ideal m

of R.

Proof. (1) Let M be a strongly w-copure flat R-module. By Corollary 4.5(1),
M [X] is a strongly w-copure flat R[X]-module. By Corollary 4.5(2), M{X} is
a strongly w-copure flat R{X}-module. Since R{X} is a DW-ring, M{X} is a
strongly copure flat R{X}-module.

(2) Let E be an injective Rm -module. Then E is an injective w-module
over R. Thus TorRi (E,M) is a GV -torsion R-module for any i ≥ 1. Since
TorRi (E,M) is also an Rm -module, it follows from [23, Proposition 6.2.8] that

TorRm
i (Em ,Mm ) ∼= TorRi (E,M)m ∼= TorRi (E,M) = 0.

Now the assertion follows. �

Proposition 4.7. Let S be a multiplicative subset of a ring R. Then w-
cfD (RS) ≤ w-cfD (R).

Proof. Without loss of generality, we may assume that m := w-cfD (R) < ∞.
Let M be an RS-module. Then by Proposition 2.10, there is an exact sequence

0→ Pm → Pm−1 → · · · → P1 → P0 →M → 0,
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where each Pi is a strongly w-copure flat R-module. Thus we have an exact
sequence

0→ (Pm)S → (Pm−1)S → · · · → (P1)S → (P0)S →M → 0,

where each (Pi)S is a strongly w-copure flat RS-module by Corollary 4.5(2).
Therefore, w-cfD (RS) ≤ m. �
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