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MODULES WITH PRIME ENDOMORPHISM RINGS

So0onN-500K BAR

ABSTRACT. Some discrimination of modules whose endomorphism
rings are prime is introduced, by means of structures of submodules
inducing prime ideals of the endomorphism ring Endz{M) of a left
R—module g M over a ring R. Modules with non-prime endomor-
phism rings are contrapositively studied as well.

1. Imtroduction

For any associative ring R and any left R—module M, its endomor-
phism ring Endg{M)} will act on the right side of g M, in other words,
BRMEndg(any will be studied mainly. Thus the composite of functions
preserves the order such that the composite

fg: AL .p_ 2 ¢

of f:A-» Bandg: B -~ C defined by afg = (af)g for every a € A.
Without conflict, for any mapping f: M — N K C M,L C N we also
frequently will use notations of the image f(K) = K f of K under f and
the preimage f~1(L) = Lf~! of L under f as usual.

For any left R—module g M, the endomorphism ring Endg(M) is
said to be a prime ring if fg = 0 implies that f = 0 or g = 0. If
fg = 0 with an epimorphism f or a monomorphism g, then f = 0
or ¢ = ( follows. For instance, if every nonzero endomorphism f :
rM — rM is a monomorphism(or an epimorphism), then it clearly
follows that Endg(M) is a prime ring. However there are some modules
satisfying none of these. In order to study these modules having prime
endomorphisin rings we need some definitions of submodules of modules.
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For any subset J of Endp(M), let InJ = MJ = 3, ;Imf and
kerJ = Nyeskerf be the sum of images of endomorphisms in J and the
intersection of kernels of endomorphisms in J, respectively. Also we call
N an open submodule if N = N°, where N° =3 fesImp<n Imf is the
sum of all images of endomorphisms contained in N and call N a closed
submodule if N = N, where N = Neg n<kerskerf is the intersection of
all kernels of endomorphisms containing N, and where S = Endg(M).

Here are some simple and easy conditions for any module g M to have
a prime endomorphism ring:

(1) If each nonzero open submodule A is isomorphic or equal to M, it
clearly follows that the endomorphism ring Endg(M) is a prime
ring.

(2) If each nonzero closed submodule is isomorphic or equal to M,
then the endomorphism ring Endg(M) is a prime ring.

However these kinds of definitions would give non-enough informa-
tions of prime endomorphism rings. Here are other definitions of sub-
modules inducing prime ideals of endomorphism rings which was studied
in [6]. Some results from [6] are written in this section.

DEFINITION 1.1 ([6]). For a submodule P < M of a left R—module
rM, P is said to be a meet-prime submodule of M if it satisfies the
following conditions; for any open submodules A, B < M with P°+ A #
Mor PP+ B#£M,

(1) if AnB<P,then A<Por B<P,
(2) if (PNANB)°#0,then A< Por B<P,
(3) f PNA=0,then A=0or P+ A=M.

A module g M is said to be meet-prime if the trivial submodule 0 of
rM is meet-prime.

In particular, if the trivial submodule 0 < M of a module g M sat-
isfies the item (1), then we will call the trivial 0 a quasi-meet-prime
submodule{or meet-irreducible in terms of open submodules)of g M, or
will call R M a quasi-meet-prime module.

DEFINITION 1.2. For a left E—module gM, 0 < M is said to be
a N—prime(or intersection-prime, or cap-prime) submodule of g M if it
satisfies the following conditions: for any open submodules A, B < M,
(1) f ANB <0, then A==0or B =0,
(2) A =0, or A is isomorphic or equal to M(briefly, denoted by
A~ M).
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A module gM is said to be N—prime if the trivial submodule 0 of
rM is N—prime.

Clearly in any module if 0 is meet-prime, then 0 is N—prime, in other
words, every meet-prime module is a N-prime module. Iowever the
converse is not true in general, for example, the integer ring zZ has the
trivial 0 < Z is a N—prime submodule 0 < Z but not a meet-prime
submodule of it.

Easily for any submodule P < M, we have that P is meet-prime if and
only if P? is meet-prime and that every module isomorphism preserves
the meet-primeness and the N-primeness between isomorphic modules.

Recall a module gM is said to be simple if all submodules of g M
are only the trivial submodules 0 and M itself. Likewise, we define a
module gk M to be openly simple by all open submodules of x M are only
the trivial submodules 0 and M itself.

REMARK 1.3. Any simple module is openly simple, however the con-
verse is not true in general. For the integer ring Z, a left Z—module
z2Z{p>°) for prime p is openly simple but not simple.

- LEMMA 1.4. For any left R—module pM, we have that 0 < M is
meet-prime in g M if and only if g M is openly simple,

Hereafter S denotes the endomorphism ring Endg(M) of a left R-
module p M.

LemMaA 1.5. For any left R—module pM, we have the following:

(1} If P < M is any fully invariant meet-prime submodule of Rk M,
then I” = { f € § |Imf < P} 9 8 is a prime ideal of §.

(2) If 0 < M is a N-prime submodule of g M, then 0 < § is a prime
ideal of S, that is, S is a prime ring.

PrROPOSITION 1.6. For any left R—module g M, if at Jeast one of the
following is satisfied:

(1) grM is an openly simple module.
(2) For each nonzero endomorphism f: pM — gM, (kerf)° =0.
(3) Every nonzero open submodule is isomorphic or equal to M.
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(4) Every open submodule of g M is fully invariant essential(or large)
and 0 < M is quasi-meet-prime.

(5) S is commutative and 0 < M is quasi-meet-prime.

(6} The zero submodule 0 < M is N-prime.

Then the endomorphism ring S is a prime ring.

A left R—module g M is said to be self-generated if each submodule
of R M is open ([4]). It is clear that for any self generated module g M, 0
is meet-prime if and only if M is simple.

DEFINITION 1.7 ([6]). For a submodule P < M of a left R—module
rM, we will say that P is a sum-prime submodule of g M if it satisfies
the following conditions: for any closed submodules A, B < M with
PnA#£0or PNB#0,

(1} f P< A+ B,then P < Aor P<B,

(2) f P+ A+ B# M,then P< Aor P< B,

(3 f P+A=M,then A=Mor PNA=0

A module M is said to be sum-prime if M is a sumn-prime submodule
of M. In particular, if the trivial submodule M of a module M
satisfies the item (1), then we will call gM quasi-sum-prime(or sum-
irreducible in terms of closed submodules).

DEFINITION 1.8. For a left R—module g M, we will say that M is a
+prime submodule of g M if it satisfies the following conditions: for any
closed submodules A, B < M,

() f M <A+ B,then M =Aor M = B,
(2) A=0o0r A~ M is isomorphic or equal to M.

A module g M is said to be +prime if M is a +prime submodule of
rM.

Clearly for any submodule P < M, we have that P is a sum-prime
submodule of gM if and only if P is a sum-prime submodule of g M
and that every module isomorphism preserves the sum-primeness and
the +primeness between isomorphic modules. We also have that every
sum-prime module is a +prime module.

We also define a module gM to be closedly simple by all the closed
submodules of g M are the trivial submodules 0 and 3 only.
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REMARK 1.9. Any simple module is also closedly simple, however the
converse is not true in general. For the integer ring Z, a left Z—module
77 is closedly simple but not simple.

LEMMA 1.10. For any left R—module g M, we have that M is sum-
prime in pRM if and only if gM is closedly simple.

LeEMMA 1.11 ([6]). For any left R—module pM, we have the follow-
ing.
(1) If P < M is any fully invariant sum-prime submodule of g M,
then Ip={ f€ S|P <kerf} isaprime ideal of S.
(2) If M is a +-prime submodule of g M, then 0 < § is a prime ideal
of S, that is, S is a prime ring.

ProrosITION 1.12. For any left R—module gM, if at least one of
the following is satisfied:

(1) rM is a closedly simple module.

(2) For each nonzero endomorphism f : gkM — g M, Imf=Mfis
improper, i.e., Imf = Mf = M.

(3) Every nonzero closed submodule is isomorphic or equal to M.

(4) Every closed submodule of gM is fully invariant superfluous(or
small) and M < rM is quasi-sum-prime.

(5) S is commutative and M < gM Is quasi-sum-prime.

(6) The trivial submodule M < gpM is +-prime.

Then the endomorphism ring S is a prime ring.

A left pM is said to be self-cogenerated if each submodule of gM is
closed ([4]).
It is clear that any self cogenerated sum-prime module is simple.

2. Meet-prime or N-prime submodules under homomor-
phisms

For any function f : pM — grN the preimage assignment of f, con-
veniently denoted by f~1 or f~ : P(N) — P(M) from the power set
P(N) of gV into the power set P(M) of g M is a function always.
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An R—homomorphism f: gM — gN is said to be open if the image
assignment f : P(M) — P(N) preserves open submodules, in other
words, f(A) < N is an open submodule of g N, for any open submodule
A<M,

THEOREM 2.1. For any open monomorphism f : pM — N, we
have the following.

(1) If P is a meet-prime submodule of g N, then f~1(P)} is also a
meet-prime submodule of RM.
(2) If gN is a N-prime module, then g M is also a N-prime module.

Proof. (1) For any open submodules A4, B < M such that f~!(P) +
A#Mor f7Y(P)+ B # M, (i)if AnB < f~Y{P), then since f is a
monomorphism f(AN B) = f(A)n f(B) < P. Since f is open and P
is meet(resp. N)-prime in g N it follows that f(A) < Por f(B) < P.
Therefore A < f~Y(P) or B < f~}(P).

{H F[ANBNfYP)° # 0, then AnNBN f~HP) # 0 follows
immediately. From the openness of the monomorphism f it follows easily
that 0 # f(A)n f(B) N f(f~1(P)) < f(A)N f(B)N P, f(A), f(B) are
open submodules of gV such that P° + f(A) # N or P° + f(B) # N.
From the meet(resp. N)-primeness of P it follows that f{A) < P or
f(B)< Pand hence A< f~1(P)or B< f~YP).

(iii) If ANf=Y(P) = O(resp. with f~1(P) # 0}, then from a monomor-
phism f it follows that f(A)N P =0.

Thus f(A) = 0 or P+ f(A) = N follows from the meet (resp. N)-
primeness of . Hence we have clearly that A=0or f~'(P}+ A= M.

(2): If f1(P) = 0, then PN f(M) = 0. For the case of P # 0 we have
that P+ f{A) = P& f(A4) = N and hence A = f~1(N) = M. For the
case of P = 0 we have that f(A4) = 0 or f(A) ~ N. Since f(M) < N
is an open submodule of RN we have that f(M) = 0 or f(M) ~ N.
Therefore f(A) = Qor f(A)~ f(M) and hence A=0o0r A~ M. O

COROLLARY 2.2. For any monomorphism f : M — grN with a
self-generated module RN, we have the following.
(1) If P is a meet-prime submodule of gN, then f~1(P) is also a

meet-prime submodule of gM.
(2) If gN is a N-prime module, then gk M is also a N-prime module.
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Proof. Since for any self-generated module g/ any homomorphism
f 1 rM — gN is an open mapping. Thus the proof is completed by the
same proof of Theorem 2.1. O

REMARK 2.3. It is careful to apply the above Theorem 2.1 to the
inclusion mapping ¢ : g K — M. Since for any submodule K < M, the
open submodule A =37 n i x) wg<a KIF X repndnon,msca MF,
in general. In other words, it is not necessary for all open submodules in
any submodule g X < 3 M to be open submodules of g M. For example,
for any prime number p, a module zZ(p>) having a submodule K =
{ O,I/P,Q/P,' o a(p - 1)/pfl/p2!2/p2)"' ,(P - 1)/}‘92 } < Z(poo) is such
a module that the inclusion mapping ¢ : zK — zZ(p™) is not an open

mapping.

COROLLARY 2.4. For any module g M and for a submodule K < M
such that each open submodule A < K of g K is open in gM, that is,

A= Z Kg= Z M f, we have the following.
gEEndg(K),Kg<A FEEnd (M), Mf<A
(1) If P is a meet-prime submodule of g M, then PNK is meet-prime
in RK-

(2) If g N is a N-prime module, then p M is also a N-prime module.

Proof. Since the inclusion ¢ : g K ~» gM is an open monomorphism
by Theorem 2.1, we have that PN K is a meet(resp. 0 < K is N)-prime
submodule of g K. O

COROLLARY 2.5. For any N-prime module Rk M and for a submodule
K < M such that each open submodule

A= > Kg= 3 MF,

9€Endr(K), Kg<A FEEndp{M),Mf<A

we have a N-prime module p K and furthermore Endg(K') is a prime
endomorphism ring.

Proof. Considering the inclusion mapping ¢ : K — gM, then we
have a monomorphism ¢ such that kert = 0 is also NM-prime in g K by
the M-primeness of 0 in gM. Hence the endomorphism ring Endgz{K)
is prime. 0
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COROLLARY 2.6. For a self-generated N-prime module g M and for
any submodule K < M, we have a N-prime module p K and furthermore
Endg(K) is a prime endomorphism ring.

Proof. Since the inclusion mapping ¢ : pK — rM with a self-
generated module g M is an open monomorphism always. From Corol-
lary 2.5 it follows that gK is also a N-prime module, ie, 0 < K is
M-prime and hence the endomorphism ring Endg(K) is a prime ring.[]

THEOREM 2.7. For any R-epimorphism f : M — pN with the open
preimage assignment and for a submodule @ < N of gN, we have the
following.

(1) If f (@) < M is meet-prime, then Q is a meet-prime submodule
of RN.

(2) If kerf < M is a meet-prime submodule of R M, then pN is
a meet-prime module, and furthermore we have a meet-prime
quotient module g M /kerf.

COROLLARY 2.8. For any R-epimorphism f: gpM — gpN with a self
generated module gM and for a submodule Q@ < N of g N, we have the
following.

(1) If f1Q) < M is meet-prime, then Q) is a meet-prime submodule
of RN .

(2) If kerf < M is a meet-prime submodule of pM, then pN is a
meet-prime module. Furthermore we have a meet-prime quotient
module gM /kerf.

Proof. Since pM is self-generated module any homomorphism pM —
rN has the open preimage assignment. By Theorem 2.7 the proof is
established easily. (]

For any module g M and for any submodule K < M of g M, consider-
ing the quotient module g M/K and the projection 7 : gM — pM/K,
additionally if K is open and fully invariant, then the projection w :
rM — gM/K has an open image assignment, i.e. we have an open
submodule w(A) < M/K for any open submodule A < M such that
ADK.
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REMARK 2.9. However the projection m doesn’t have an open preim-
age assignment in general. For example, let zQ be the Z—module of
rational numbers over the integer ring Z. Then « : zQ — zQ/Z doesn’t
have an open preimage assignment.

We have an immediate consequence of the above Theorem 2.7 that
the meet-primeness is cohereditary in a kind of the factor modules.

COROLLARY 2.10. For any module p M and for any fully invariant
open submodule K < M of gM, if P < M such that K < P and if
7w(P) < M/K is meet-prime, then P is a meet-prime submodule of g M.

COROLLARY 2.11. For any module g M and for any open fully invari-
ant submodule K of gM, if the quotient module g M /K is meet-prime,
then K < M is meet-prime.

Proof. Since the projection mapping m : kM — pM/K has an open
image assignment for each open fully invariant submodule K < M.
Additionally if 0 = K < M/K is meet-prime in gM/K, then we have
immediately that X < M is a meet-prime submodule of pM. ]

THEOREM 2.12. For a self-generated module g N and for any R-
epimorphism f : gM — gN, if P < N is meet-prime in gN, then
fUP) < M is a meet-prime submodule of g M.

Proof. For any R—homomorphism f : gpM — pN with a self-
generated module p N, we have the induced isomorphism f : g M /ker f —
gN of f: gpM — pN. From the self-generatedness of gN it follows
that gpM/kerf is also a self-generated module. Thus the projection
m: pM — gM/kerf is an open epimorphism.

Now that P < N is meet-prime if and only if 7_1(P) < M/kerf is
meet-prime it remains to show that f~'(P) < M is meet-prime for any
given meet-prime submodule P < N.

By the Corollary 2.10 it immediately concludes that f~1(P) < M is
meet-prime if P < N is a meet-prime submodule of zN. O
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COROLLARY 2.13. For self-generated modules pM, p N, for any sub-
module P < N of gN, and for any R—epimorphism f : pM — grN, the
following are equivalent:

(1) P < N is a meet-prime submodule of gN;
(2) f~Y(P)} < M is a meet-prime submodule of pM.

Proof. By the Corollary 2.10 and by the Theorem 2.12 the proof is
completed at once. O

3. Sum-prime or +prime submodules under homomorphisms

An R—homomrophism f : gM — grN is said to be closed if the
image assignment f : P(M) — P(N) preserves closed submodules, in
other words, f(A4) < N is a closed submodule of gV, for any closed
submodule A < M. For example, any inclusion mapping ¢ : nZ — Z(for
any n € N) is a closed monomorphism. We have some results for sum-
prime submodules.

THEOREM 3.1. For any closed monomorphism f : gM — grN and
for a submodule Q@ < M of g M, we have the following.
(1) If f(Q) is sum-prime in gN, then Q is sum-prime in g M.
(2) If gN is +(or sum—)prime, then gM is +(or sum—)prime, re-
spectively.

Proof. (1): 1t is elementary.

(2): (ii) It first is going to show that for any closed submodule A <
M,A=0o0r A~ M. Since the improper submodule M = ker0 is
a closed submodule of gM we have a closed submodule f(M) < N.
From the +primeness of N < N it follows that f(A) = 0 or f(A) =
N for any closed submodule A < M and also we have f(M) >~ N.
Hence we have that A = 0 or A ~ M by the monomorphism f. (i) if
M < A+ B with closed submodules A, B such that A # 0 or B # 0,
then f(M) < f(A+ B) = f(A)+ f(B) with all cosed submodules
FM), F(A) + F(B), [(A), f(B) < N and f(M) =~ N, f(A) + f(B) =
N,f(A) =~ N or f(B) = N. Since N is N-prime in pN we have that
f(M) < f(A) or f(M) < f(B). Then it follows that M < Aor M < B.
Therefore p M is a +prime module. For the case of a sum-prime module
rN, the similar method by replacing ~ by = completes the proof. U
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CoROLLARY 3.2. For any monomorphism f : gM — gN with a self-
cogenerated module gk N and for a submodule Q < M of gM, we have
the following.

(1) If f(Q) is sum-prime in gN, then @ is sum-prime in g M.
(2) If gN is +{or sum—)prime, then gM is +(or sum—)prime, re-
spectively.

Proof. Since any homomorphism f : gM — zN with a self-
cogenerated module pN is a closed mapping, especially for any closed
submodule A < M we have that f(A) < N is a closed submodule of a
self-cogenerated module p N. Thus the proof is completed by Theorem
3.1. rl

REMARK 3.3. It is careful to apply the above Theorem 3.1 to the
inclusion mapping ¢ : R K — rM. Since any closed submodule A =
NgeEndp(K); A<kergkeTd # NfeEndp(a);a<kerskerf of a submodule pK
(< rM) need not to be a closed submodule of M, in general. In other
words, it is not necessary for all closed submodules in g K{for K < M)
to be closed submodules of pM. FPor example, a module zQQ having
a submodule zZ < zQ is such a module that the inclusion mapping
¢ : 7% — 7 is not a closed mapping.

COROLLARY 3.4. For any module g M and for a submodule K < M,
if the inclusion mapping ¢ : gK — gM is a closed monomorphism, then
we have the following.

(1) If f(Q) is sum-prime in g M, then Q is a sum-prime submodule

of RK.

(2) If gN is +(or sum—)prime, then gM is +(or sum—)prime, re-
spectively.

Proof. It is an immediate consequence of Theorem 3.1. a

COROLLARY 3.5. For any module gpM and for a submodule K < M,
if the inclusion mapping ¢ : gK — M is a closed monomorphism, then
we have the following.

(1) IfK is sum-prime in g M, then K is sum-prime in pK and hence
Endg(K) is prime.

(2) If gM is +(or sum—)prime, then g K is +(or sum—)prime, re-
spectively.
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Proof. Since a submodule K < M is sum-prime if and only if K < M
is sum-prime and since the inclusion mapping ¢ : g K — pM is a closed
monomorphism it follows quickly from Theorem 3.1 that K is sum-prime
in g K. Furthermore we have a prime endomorphism ring Endg(&). O

CoROLLARY 3.6. For any self-cogencrated module g M and any sub-
module K < M, we have the following.

(1) IfK is sum-prime in gM, then K is sum-prime in g K and hence
the endomorphism ring Endg(K) is prime.

(2) Additionally if gM is +{or sum—)prime, then every submodule
rK is +(or sum—)prime, respectively. And hence we have a
prime endomorphism ring Endg(K).

Proof. Since every submodule K < M is a closed submodule of gM
every closed submodule of gpK is also a closed submodule of a self-
cogenerated module p M and thus we have that the inclusion ¢ : p K <
rM is a closed monomorphism. By Theorem 3.1 we have that K is sum-
prime in K. Therefore the prime endomorphism End(K) is obtained
automatically. 0

THEOREM 3.7. For any epimorphism f : pM — pN with the closed
preimage assignment and for a submodule P < N of gN, we have the
following.

(1) If f~Y(P) is a sum-prime submodule of Rk M, then P is also a
sum-prime submodule of g N.

(2) If gM is a +(or sum—)prime module, then rN is +(or sum—)
prime, respectively.

Proof. (1): It is sufficient to show that P is a sum-prime submodule
of rN. For any closed submodule C < N with PNC # 0, we have that
FHP)NFHC) £ 0. And F1P)N fHC) = FTHP) N FHC) £ 0
follows from the closed preimage assignment of f.

For any closed submodules A,B < N with PN A#£0or PN B #0,
we also have that f~1(P)n f~1(A4) #0or f~Y(P)n f~1(B) #0.

(i) If P < A+ B, then P < A+ Bsince A+B = ker(I4NIg) is a closed
submodule of gN. Thus f~1(P) < f~Y A+ B) = f1(A)+ f~1B) =
F~HA) + f~1(B) implies that f~'(P) < f~'(4) or f~}(P) < f~1(B)
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by the sum-primeness of f 4(?). Thus it follows from an epimorphism
fthat P< Aor P< B,

(i) If P+ A+ B # N, then the closed submodule f~1(P)+ f~1(A)+
f~YB) #£ M follows. f~1(P)+ f~(A) + f~1(B) # M by the sum-
primeness of f ~(P) implies that f~1(P) < f~1(A) or f~}(P) < f~Y(B).
Thus P < A or P < B follows immediately.

(iii) f P+ A = N, then f7}(P)+ f YA) = f1(P)+ f YA =
M. By the sum-primeness of f~1(P) it follows that f~!(A) = M or
FY(PYn f71(A) = 0. Thus A= N or PN A =0 follows. Therefore P
is sum-prime and hence P is sum-prime in g V.

(2): For any nonzero closed submodules A,B < N, we have closed
submodules f~1{A) ~ M or f~Y(B) ~ M since M is +prime. Hence
it. follows clearly that A ~ f(M) = N or B ~ f(M) = N. The rest of
the proof are completed by the same methods done in the proof of (2)
of Theorem 3.1. a

COROLLARY 3.8. For any epimorphism f . gM — gpN with a self-
cogenerated module g M and for a submodule P < N of g N, we have
the following.

(1) If f~Y(P) is a sum-prime submodule of gM, then P is also a
sum-prime submodule of g N.

(2) If gM is +(or sum—)prime, then gpN is -(or sum—)prime, re-
spectively.

Proof. Since the preimage assignment of f : gRM — pN for any

self-cogenerated module g M is closed by Theorem 3.8 the proof is com-
pleted. d

REMARK 3.9. The preimage assignment A+ K — 7 1{(A+ K)= A
of the projection 7 : gM — gM/K for each submodule A < M is not
necessary to be closed, in general.

However if A < M is a closed submodule of pM, then it follows
easily that A + K is also a closed submeodule of g M which doesn’t
guarantee that A + K is a closed submodule of gRM/K for any sub-
module K < M. For example, for the Abelian group €@ of rational
numbers, considering a module zQ(forget the multiplication in Q) with
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that ;Llf(M)= h as below.

RM —')' RM T RM
g

| |7 |/
rf(M) —2— rf(M) —"— Rf(M)

! !

RN T RN
Ik

Since f is an open monomorphism we also have a nonzero open sub-

module f((kerh’)°) < N and hence

F((kerh')°) = 3 Ngq = [f((kerh')*)]°.
qEEnd g (N );ime< f((kerh')e)
Therefore
0 # f((kerh')°) = > Ng<kerh® <N

g€End g (N);Img< f((kerh’)?)

for some nonzero endomorphism A € Endg(N). Therefore Endg(NV) is

not prime.
(2): This is the contraposition of (1).

COROLLARY 4.1.3. For an (quasi—)injective module gM and a sub-
module K < M, if the inclusion mapping ¢ : K — gM is open, then

we have the following.

(1) If Endg(K) is not prime, then neither Endr(M) is.

(2) If Endg(M) is prime, then so Endgr(K) is.

Proof. It is easy to complete the proof by Theorem 4.1.2.

COROLLARY 4.1.4. For an (quasi—)injective self-generated module

rM and any submodule K < M, we have the following.

(1) If Endg(K) is not prime, then neither Endg(M) is.

(2) If Endg(M) is prime, then so Endg(K) is.
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Proof. Since for a self-generated module gk M the inclusion mapping
¢ : pK — pM is always an open monomorphism. Thus the proof is
completed by Corollary 4.1.3. O

EXAMPLES 4.1.5. For an injective module zZ we also have an injec-
tive module zZ ® Z < z @ Z = Z(*®) has a nonprime endomorphism
ring. This fact says that 27> has also a nonprime endomorphism ring.

And an injective non-self-generated module zj,)Z[z] with a prime en-
domorphism ring has a submodule kZ + zZ[z] < Z[z|(for k¥ € N) has
an open inclusion ¢ : gy kZ + zZ[z] — z5Z[z]. It follows from the
Corollary 2.3 that the endomorphism ring Endg, (¥Z + xZ[z]) is prime,
on the other hand, a submodule zZ[z] < Z[z| has a non-open inclusion
Lt g ehlx] — zigZ[z] and the Corollary 4.1.3 can’t be applied to a
submodule z,zZ[z].

A left R—module zP is said to be projective([2], (3], [5]) if for any
epimorphism p : gM — gN and for any homomorphism g : gkP — gN,
there is 8 homomorphism §: gP — gM such that gp=g.

gP
3g J'g
rM —2 5 N — 0

In the above definition of a projective module replacing r P with p M
we have a definition of a quasi-projective module. Thus it is clear that
any projective module is quasi-projective. Therefore the next results are
for both quasi-projective modules and projective modules.

For any self-generated module gM and for an open fully invariant
submodule Q@ < M of R M, the projection 7 : pM — rM/() is an open
epimorphism with the open preimage assignment of .

THEOREM 4.1.6. For a (quasi—)projective module p N, if there is an
R-epimorphism f : gM — pN with the open preimage assignment of
f and with an open fully invariant submodule kerf, then we have the
following.

(1) If Endr(N)} is not prime, then neither Endg(M) nor Endp

(M/kerf) is.
(2) If Endg(M) is prime, then so Endg(N) and Endg (M/kerf)

are.
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Proof. (1): Suppose that Endg(N} is not a prime ring. Then there is
an endomorphism g : gN — pN such that 0 # kerg® < N. It is estab-
lished immediately from the isomorphism theorem that Endg{M/ker f)
is not a prime ring.

So it remains to show that Endg(M) is not prime. Since the preimage
assignment of f is open we have an open submodule f~!(kerg®) < M
such that 0 # f~'(kerg®) = 3 cpna(am):Ma< 1 (kergsy M3 S M. On the
other hand there is the induced isomorphism f: M /kerf — pN since
f: rM — RN is an epimorphism.

For an endomorphism § = fgf ! : aM/kerf ~ rN — pM/kerf
since g N is (quasi-)projective there is an endomorphism ¢’ : gM/kerf —
rM such that ¢'m = § as in the diagram:

rM/kerf ~ pN
3 QJ,
M ——  pM/kerf —— 0

Hence we have found an endomorphism ng’ : gM — gM/kerf —
rM such that 0 # [ker(ng')]® < M followed easily from the following
commutative diagram:

g

rIN — rN 0
Z I
M —— gM —F— pM/kerf 5, rM/ker f
g’l e
rM

Since mg'm = =§ and since the preimage assignment of 7 is open it follows
that 0 # Mq < mHker(g'm)?) = n ! (kerg®) = ker(rg')° < M, for some
0 # ¢ € Endr(M) which implies that 0 # ker(mg'}° = 7! ((kerg’)°} <
M. Therefore Endg(M) is not a prime ring.

(2): This is the contraposition of (1). 0
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CoROLLARY 4.1.7. For a (quasi-)projective module gk N and for a
self-generated module p M, if there is an R-epimorphism f : pM — pN
with a fully invariant kernel kerf, then we have the following.

(1) If Endgr(N) is not prime, then neither Endg(M/kerf) is.
(2) If Endg(M) is prime, then so Endgr(N) and Endg(M/kerf)
are.

Proof. Since each homomorphism f : gRM — g N with a self-generated
module g M has the open preimage assignment and kerf < M is an open
submodule of g M Theorem 4.1.6 completes the proof. a

EXAMPLES 4.1.8. It is easy to find an epimorphism f : zZ() —
zZ?) with a fully invariant kernel kerf from a self-generated module
2Z(%°) onto a projective module zZ¢?), where zZ(>) and zZ® are direct
sums of infinite and 2-copies of Z, respectively. It follows immediately
from Corollary 4.1.7 that Endz(Z(>) is not prime.

4.2. Using kernels of itnages of endomorphisms

If we have a nonprime endomorphism ring S = Endg{M) of a module
rM, then there is some nonzero endomorphism f € S such that 0 £
Imf < M, vice versa. More precisely, if S is not prime, then there are
nonzero endomorphisms f,g € § such that fg = 0. Thus the fact of
fg = 0 implies that 0 # Imf = M f < kerg < M. Hence 0 # Imf < M.

REMARK 4.2.1. For a module g M, the endomorphism ring Endg (M)
is not prime if and only if there is a nonzero endomorphism f € Endg (M)
such that 0 £ Mf < M.

TREOREM 4.2.2. For an (quasi—)injective module g N, if there is a
closed monomorphism f : kM — pN, then we have the following.

(1) If Endr(M) is not prime, then neither Endgr{(f(M)) nor
Endg(N)} is.
(2) If Endp(N) is prime, then Endgp(M) is prime.

Proof. (1): If Endr(M} is not a prime ring, then by the isomorphism
between g M and g f(3} it is clearly obtained that Endg(f(M)) is not a
prime ring. Thus there is some endomorphism g € Endg(M) such that
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0+# Mg # M. Since f is closed monomorphism we have a closed sub-
module f(Mg) < N and f(Mg) = NycEndn(N); F(FTg)<kergKeTq < N.
Since pN is (quasi-)injective there is an extension § : gIN — grN
such that § [san= /9] : RF(M) — rf(M) and 0 # f(Mg) =
mqe@ndﬂ(i_\i);f(M_g)gkequerq < Ng < N, showing that Endg(N} is not
a prime ring.

(2): This is the contraposition of (1). O

COROLLARY 4.2.3. For any {quasi—)injective self-cogenerated mod-
ule g N, if there is a monomorphism [ : gM — N, then we have the
following.

(1) If Endr(M) is not a prime ring. Then neither Endg{(N) nor
Endg(f(M)) is prime.

(2) IfEndg(N) is a prime ring. Then so Endg(M) and Endg(f{M))
are prime.

Proof. Since pN is self-cogenerated any homomorphism f : gM —
riV is a closed mapping. Theorem 4.2.2 completes the proof. O

COROLLARY 4.2.4. For any (quasi—)injective self-cogenerated mod-
ule g N and for any submodule K < y N, we have the following.

(1) If Endg(K) is not prime, then neither Endg(N) is.

(2) If Endg(N) is prime, then so Endp(K) is.

Proof. Since grN is self-cogenerated the inclusion mapping
t: g — gN is a closed monomorphism. It follows immediately from
Theorem 4.2.2. a

EXAMPLES 4.2.5. Clearly there is a closed monomorphism
[z Q® = 7 Q) from a module zQ® into an injective module
2Q(), where Z is the integer ring and where zQ(*) and ;Q'? are
direct sums of infinite copies and 2-copies of the rational field Q, respec-
tively. Thus it follows that the endomorphism ring Endz(Q(*)) is not
prime from the nonprimeness of Endz(@{g)).

For any module M and for a closed fully invariant submodule @ of
rM, the projection 7 : g M — rM/Q is a closed epimorphism with the
closed preimage assignment of 7.
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THEOREM 4.2.6. For a (quasi—)projective module pN, if there is a
closed epimorphism f : pM — pN with the closed preimage assignment
and with a closed fully invariant submodule kerf < M, then we have
the following.

(1) If Endg(N) is not prime,

then neither Endp(M) nor Endg(M/kerf) is.
(2) If Endg(M) is prime,

then so Endg(N) and Endg(M/kerf) are.

Proof. (1): From the nonprime endomorphism ring Endg(N) it fol-
lows that there is a nonzero endomorphism g : gN — gN such that
0 # Img = Ng < N and Endgr(M/kerf) is not a prime ring. In
other words, there are endomorphisms g,¢ : gRN — gN such that
0 # Img < kerk < N, i.e., g¢ = Opn.

Let f : gM/kerf — rN be the induced isomorphism by f. Then
we have endomorphisms § = fgf~! and ¢ = fof ™! : pM/kerf —
M /kerf such that 0 #£ Tmj = (M/kerf)§ < kerd < M /kerf.

Since g N ~ rM/kerf is (quasi-)}projective there are homomorphisms
g,¢ : gM/kerf — gM and hence there are endomorphisms k& =
7g',l = 7¢’ : gpM — pM such that ¢’z = § and ¢'w = .

M /ker f
9, ¢/ sl
RM ——L> RM/kerf — 0

Hence we have found endomorphisms ng’, ¢’ : kM — pM/kerf —

rM such that 0 # Im{mg’) < kerm¢’ < M followed easily from the
following commutative diagram:

RNLRNLRN

7l al d
rM/kerf 7, rM/ker f N rM [ker f
] I S P
M M rM

Thus Endg(A) is not a prime ring.



1608 Soon-Sook Bae

(2): This is the contraposition of (1). O

COROLLARY 4.2.7. For a {quasi—)projective module g N and for a
self-cogenerated module g M if there is an epimorphism f: gpM — gN
with a fully invariant kernel ker f, then we have the following.

(1) If Endgr(N) is not prime,

then neither Endg(M) nor Endg(M /kerf) is.
(2) If Endg(M) is prime,
then Endg(N) is prime, and thus Endp(M/ker f) is prime.

Proof. Since any homomorphism f : gpM — rN with a self-
cogenerated module p M is a closed mapping and since the projection
T : RM — gpM/kerf has the closed image assignment and the closed
preimage assignment the proof is established by Theorem 4.2.6. O

ExAMPLES 4.2.8. For a self-cogenerated module zZ; x ( H Zy,)

neM\kN
with any composite number & and for a projective module zZ;, we

have an epimorphism f : zZr X ( H Zn) — zZ such that kerf is
HEN\R:N
closed fully invariant. From the nonprimeness of the endomorphism ring

Endg(Z,) it follows that the endomorphism ring Endyg (Z x ( H Zn))

nEN kN
is non-prime.

5. Open meet-prime or closed sum-prime submodules of
modules

For fully invariant submodules A, B < M, we have that
IAIB, IPFrA 1A nIP = 147F

and
Ialg, Igly CIsNiIg =1Iayn

hold.
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LEMMA 5.1. For any open A < M, open fully invariant A,, Az, ---,
A, < M, and any fully invariant meet-prime submodules P, Py, P, -+,
P, < M of a left R—module pM we have the following.

(1) If A CUTF,, then A < F; for some 1.
(2) IfFNTA; < P, then A; < P for some 1.
(3) IfNTA; = P, then A; = P for some 1.

The following proof is just as the same as the proof of Proposition
1.11 [p.8, 1].

Proof. For fully invariant meet-prime submodules P, P, B, --- , B,
< M we have prime ideals I”, I, I™2, ... I < Endg(M) of the
endomorphism ring Endg(M) of gM.

(1): By the induction on 7 in the form;

A4 P (1<i<mn) impliy that A £ UTP; .

For n = 1, it clearly holds.

For n > 1 we assume that the item (1) is true for n— 1. Then for each
i, there is an endomorphism f; € I such that f; ¢ I for all j # 1.

If for some i, there is an isomorphism f; € I such that f; ¢ 17, Then
it is proved. If not, there is an isomorphism f; € I such that f; & I for
all 4. Considering an endomorphism g = E?:l fifo- o ficifivr - fn ¢
I¥T¥i, Then we have that Mg < A but Mg ¢ U?P,. From the openness
of A it follows that A < P; for some i. Therefore the item (1) is true.

(2): Suppose that P £ A; for every i(1 < 7 < n). Then there is
some endomorphism f; € T4 such that f; ¢ I¥ for every i. And hence
g=1TI7 fi € TIT I CNpI4\IF = "7 4\ IF gince 1T is prime. Then
it concludes that P f NTA;.

(3): If P =Nt A;, then from the above (2} it follows immediately that
P = A; for some 1. O

LEMMA 5.2. For any closed submodule B < M, any closed fully
invariant submodules By, Bs,--- , B,, < M, and any fully invariant sum-
prime submodules @}, 1, @2, +-- , @n < M of any R—module p M, we
have the following.

(1) If B 2 UtQ;, then B > @Q; for some 1.
(2) IfQ < ¥ By, then Q < B; for some i.
(3) IfQ =37 B, then B; = Q for some i.
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Proof. For fully invariant meet-prime submodules @1,&2, - ,@n <
M we have prime ideals I, , Ig,, -+ , g, < Endgr(M) of the endomor-
phism ring Endg(M).

(1): By the induction on n in the form;

B #Q; (1 <i<n) imply that B 2 UTQ; .

For n = 1, it clearly holds.

For n > 1 we assume that the item (1) is true for n —1. Then for each
i, there is an endomorphism f; € Ip such that f; ¢ Iy, for all 7 # 4.

If for some 4, there is an isomorphism f; € Ip such that f; € {g,. Then
it is proved. If not, there is an isomorphism f; € I'g such that f; ¢ Ig, for
all i. Considering an endomorphism g =3 | fife- fic1fit1- fn ¢
Iung,- Then we have that kerg > B but kerg 2 U7Q;. From the
closedness of B it follows that B > (; for some i. Therefore the item
(1) is true.

(2): Suppose that Q@ £ B, for every i(1 < 7 < n). Then there is
some endomorphism f; € Ig, such that f; ¢ Iy for every 7. And hence
g =TIt fi € II1 15, € NI, \Ig = Is>7 g, \ Iq since Ig is prime. Then
it concludes that Q £ 3.} B;.

(3): If @ = 3.7 Bi, then from the above (2) it follows immediately
that Q = B; for some i. O

REMARK 5.3. Any maximal submodule N < M of a module g M (if
rM has any) is meet-prime and any minimal submodule(if g M has any)
is sum-prime.

PROPOSITION 5.4. For any module p M, we have the following.

(1) There exists at least one proper maximal open submodule (that
is, maximal submodule among the open submodules) of p M.

(2) There exists at least one nonzero minimal closed submodule (that
is, minimal submodule among the closed submodules) of g M.

Proof. (1): Let & = {A < M|A is a proper open submodule of gM}
be the set of all proper open submodules of g M. Then & # § since the
trivial submodule 0 is open. Let € be any chain in & of proper open
submodules of pM. Then € : --- < A; < Ay <. <A, <A, 1 <+
has an upper bound U; A; which is an open submodule of gM. By the
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Zorn's lemma there exists a maximal element UA; = 4 < M in &, in
fact, which is a maximal among proper open submodules of gM.

Easily it follows from Definition 1.1 that such a maximal element A
is a meet-prime submodule of p M.

(2): Let T = {B(# 0) < M|B is a nonzero closed submodule of M}
be the set of all nonzero closed submodules of pk M. Then T # () since the
trivial submodule M is closed. Let © be any chain in ¥ of nonzero closed
submodules of gM. Then D :---> By > By >+ > B, > Byy1 > -+
has a lower bound NB; which is a closed submodule of kM. By the
Zorn’s lemma with a reversing set inclusion order there exists a minimal
glement NB;, = B< M in%.

Easily it follows from Definition 1.7 that such a minimal element B
is a sum-prime submodule of g M. O

REMARK 5.5. In spite of the Proposition 5.4 it is not guaranteeded
for the sets

{P £ M | Pis a proper fully invariant meet-prime submodule of pM}
and
{P # 0| P is a nonzero fully invariant sum-prime submodule of pM}

(which will be studied in the sections 7 and 8) to be nonempty sets, for
any module p M.

6. Zariski topologies for endomorphism rings

It is trivial that if an endomorphism ring & has no prime ideal of S,
then S is not prime.

For any left module gM over a ring R, there exists a proper fully
invariant meet-prime or proper fully invariant sum-prime submodule P,
respectively, we have a prime ideal I” or Ip in the endomorphism ring
S = Endg(M). Unfortunately this does not guarantec the existence of
a proper prime ideal of 5.

We let Spec(S) be the set of all prime ideals of S(even though $ need
not to be a commutative ring), precisely

Spec(S) = { Ja§| J is a prime ideal of § }
which will be called the prime spectrum of the endomorphism ring 5.

Then we also have a topological space which will be named by Zariski
topology on the spectrum Spec(S) as follows:
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THEOREM 6.1. For any module gM, the prime spectrum Spec(S)
of the endomorphism ring S is a topological space, if as closed sets we
take all sets of form v(E) = { I € Spec(S) | E C [ }, where E is any
subset of S. Precisely, the sets v(E) satisfy the axioms for closed sets in
a topological space.

(1) For any subset E C S, if {E} is the ideal of S generated by F,
then v(E) = v((E)) = v(r(E)), where r(E) = Ngc ,espec(s) Ja
is the prime radical of .

(2) v(0) = Spec(S), v(S) =@

(3) v(UierE;) = Niev(E;), for each E; C S.

{(4) v{AB) =v(A)Uv(B) for ABCS.

PROPOSITION 6.2. For any left R—module gM, Spec(S) is a topo-
logical space, if as open sets we take all sets of form

TA={JeSpec(S)| AL T},

where A is any subset of S.

Before a proof, it is convenient to note that
IFA={JeSpec(S){ AL J}={JeSpec(S) | {(A) £ J },

for A is any subset of S, where {A) is the ideal generated by the set A.
Additionally notice that for any subset A of S

TA=T() (a)) =Naeala = Neeal{a)
acA

= {J € Spec(S) | A ¢ J} = {J € Spec(5) [ (4) £ J}
= I‘(ﬂAgJﬁJg), Jg is a prime ideal of S.

The resulting topology is called the Zariski topology named after the
Zariski topology on the prime spectrum of a commutative ring. The
topological space Spec{S} is called the prime spectrum of the endomor-
phism ring § of a module g M.

Remind that a topological space X is said to be irreducible if X # 0
and if every nonempty two open sets intersect, or equivalently if every
nonempty open set is dense in X (p.13 in [1]).

THEOREM 6.3. For any module g M, the following are equivalent:

(1) Spec(S) is irreducible;

(2) The prime radical rad(S) = MNjespec(s)J 15 in Spec(S), ie,
rad(S) is a prime ideal of S.
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7. Zariski image topologies for openly regular modules

A module g M is said to be openly regular if for any submodules

C,D < M, the following properties are satisfied:
(1} C° < D° implies that C < D,
(2) C° = D° implies that C < Dor D < C.

Clearly any self-generated module is openly regular. There are openly
regular modules which are not self-generated, for instance, a module
z,[w) Zplz] for the polynomial ring z_[-)Zp[z] in an indeterminate x over
the ring Z, modulo p has nonopen submodules " Z,[x] < 5 11 Zp[z] (n €
N, where N is the set of natural numbers) having the trivial submod-
e 0 = (2"Zp[z])° < z,Zplz] (n € N). Clearly it is seen that
{z"Zy[z] | n € N} is linearly ordered. We have the following results
relative to meet-prime submodules of left R-modules: Let

II = {P, < M|P, is a proper fully invariant meet-prime submodule
of R M} be the set of all proper fully invariant meet-prime submodules
of pM. Then we have the following proposition.

PROPOSITION 7.1. For any openly regular left R—module g M, I is
a topological space, if as closed sets we take all sets of form v(E) =
{Pell| ECP}, where E is any subset of gM. Precisely, the sets
v(E) satisfy the axioms for closed sets in a topological space:

(1) For any subset E C M, if (E)} is the submodule of M generated
by E, thenv(E) = v((E)) = v(r(E)), wherer(E) = Ngcp,enFa
is the prime radical of E.

(2) v(0) = v(r(0}) =11, (M) = 0.

(3) v(Vicr£y) = Niesv(E;), for each E; C M.

(4) v(ANB) =v(A)Uu(B) for A,BC M.

The prime radical rad(M) = 7(0) = Np,en Py of any gM is an open
fully invariant submodule of g Af.

Proof. (4): If AN B C P for P €1l then (4)° N {B)° < P° implies
that (A)° < P? or (B)? < P° since P is meet-prime if and only if P°
is meet-prime. Then it follows that A C (A} < Por BC (B) < P by
letting A = B in (*).

()Y If AnB C P, then {(A)°N{B)° < P? & (A)N{(B) < P for
any meet-prime P < M in any openly regular module gM. In order to
show (*), suppose that (4} > P and (B} > P. Then A°N B°? = P°
follows and hence (A)? = (B)? = ({A) N {B))° = P° is fully invariant
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meet-prime. Hence P° < (A) N (B). Since pM is openly regular we
have that (A), (B),{A} N {B) and P are submodules of gpM which are
linearly ordered. Thus P C {A) N{B) = (AN B) C (A),{B)(which is
contradicted to AN B C P} or {A) N (B) C P C (A),(B)(which is the
required) follows. Hence the only case of {A4) N (B) € P C (A),(B)
remains to be considered, and hence we have that AN B C P. Therefore
if AN B C P, we have that {4)° N (B)° < P° <= (A)N(B) < P for
any meet-prime P < M in any openly regular module gpAM. Conversely,
v(A)Uv(B) C v(AN B) is elementary. Therefore we have proved (4).0

PROPOSITION 7.2. For any openly regular left R—module gM, 11 is
a topological space, if as open sets we take all sets of form

TA={Pecll|A¢ P},

where A is any subset of pM.

1t is convenient to note that
FA:{PEH|A;(_P}={PEH[(A)§§P},

for A is any subset of g M, where {A4) is the submodule generated by
the set A.
Additionally notice that for any subset A C M of g M

I'd = I‘(Z(a)) =Mgeala = maeAP(a>
aEA

—(PEI|A¢ P} ={Pell|{A) £ P}

= F(nAgpﬁPﬁ),
where Pp is a fully invariant meet-prime submodule of R M.

The resulting topology is called the Zariski image topology for the
openly regular M named after the Zariski topology on the prime spec-
trum of a commutative ring. The topological space 1l is called the image
spectrum of g M, denoted by Spec;{M).

Also we define the prime radical rad(M) by the intersection of all
meet-prime submodules of g M, in other words, rad(M) = N P, {cf. the
Jacobson Radical Rad({M) the intersection of all maximal submodules
of RM )
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Clearly in any openly regular module gM it is easily shown that
rad{M) < Rad(M)(if Rad(M) # M i.e., if gM has any maximal sub-
module of gM).

Let & be the set of all open submodules of gk M, then by the Zorn’s
lemma, there are maximal submodules among open submodules of gM,
being open fully invariant meet-prime submodules of M. This says
that Spec; () is a nonempty set.

If the prime radical rad(M) is a meet-prime submodule of gM, then
the image spectrum Spec;(M) = { L < M | rad(M) < L } contains
rad{M) since the prime radical rad(M) is open and fully invariant in
rM.

THEOREM 7.3. For any openly regular module gM, if a submodule
K < rad(M) of gM is in Spec;(M), then we have that K = rad(M)
and Specy (M) is irreducible.

Proof. If K € Specy(M), then K is fully invariant meet-prime, then
the open submodule K? is also fully invariant meet-prime in M. Thus
rad{M) < K° € Spec;(M) implies that rad(M) = K € Spec;(M).

And every basic open set in the image spectrum Spec;{M) contains
rad(M), in other words, Spec; (M) is irreducible. And by the hypothesis
of K <rad(M), we have an open submodule rad(M) = K which is in
Spec(M}. O

COROLLARY 7.4. For any openly regular module p M, we have that
Specy (M) is irreducible if and only if rad{M) € Spec;(M).

For any module g M, we have a surjective mapping from the image
spectrum Spec; (M) onto a subset { I¥ | P € Spec;(M)} C Spec(S) of
the prime spectrum Spec(S) of the endomorphism ring S of pM. Let
this subspace {I¥|P € Spec;(M)} be the topological subspace of the
Zariski topology of the spectrum Spec(S) of the endomorphism ring.
Then we have the next theorem.

LEMMA 7.5. For any openly regular module g M, let
Y = {IP|P ¢ Spec; (M)} C Spec(S).
Then we have the following.

(1) If Y is open in Spec(S) and if the prime spectrum Spec(S) is
irreducible. then the image spectrum Spec;(M) is irreducible.
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(2) IfY is dense in Spee(S) and if the image spectrum Specy (M) is
irreducible, then the prime spectrum Spec(S) is irreducible.

(3) IfY is open dense in Spec(S), then the prime spectrum Spec(S)
is irreducible if and only if the image spectrum Spec;(M) Is
irreducible.

COROLLARY 7.6. For any openly regular module p M, if
{I”|P € Spec;(M)}

is open dense in Spec(S), then the following are equivalent:
(1) The prime spectrum Spec(S) is reducible;
(2) The image spectrum Spec; (M) is reducible.

REMARK 7.7. The openness and density of {I”|P € Spec;(M)} in
the hypotheses of the Proposition 7.5 and Corollary 7.6 is essential.
Without the openness of the subspace Y, it is impossible for ¥ to con-
tain the prime radical of S. For example, a module zZ over the in-
teger ring Z has a non-open prime image spectrum Spec;(M) isomor-
phic to { pZ | p is a prime number} but its prime radical rad(Z) =
0 ¢ Spec;(Z), in other words, Y = {IP% | p is a prime number} is not
open in Spec(S). However it is well-known that the prime spectrum
Spec(Endz(Z)) is irreducible. And for a prime number p considering
a left zZ(p™) having an empty set Y = {I¥ | P is a meet-prime sub-
module of zZ(p™)} = @ C Spec(Endz(Z(p™))), then we have that Y is
reducible and Spec(Endz (Z(p>°))) is a singleton being irreducible in the
Zariski topology. This shows that the reducibility of ¥ does not imply
that of Spec(S) without the density of Y.

Considering the quotient module g M /rad(M) of any module g M over
the prime radical rad(M) of module g M, let T = Endg(M/rad{M})
denote the endomorphism ring of the quotient module g M/rad(M) over
the prime radical rad(M).

THEOREM 7.8. For an openly regular module g M with the prime
radical rad(M), if {I*|L ¢ Spec;{M /rad(M))} is open dense in Spec(T'),
where T' = Endp (M /rad(M)) is the endomorphism ring of the quotient
module g M/rad(M), the following are equivalent:

(1) The endomorphism ring End (M /rad(M)) is prime;
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(2) The prime spectrum Spec(T") is irreducible;
(3) The image spectrum Spec;(M /rad(M)) is irreducible;
(4} The prime radical rad(M) of gM is meet-prime.

Proof. (1) == (2): It is trivial.

(2) == (3} Assume (1), then the prime spectrum Spec(T) is irre-
ducible. Thus by the above Lemma 7.4 we have the irreducible image
spectrum Specy (M /rad(M)).

(3) = (4): From Corollary 7.4 it follows immediately.

(4) = (1): Assume that the image spectrum Spec;(M/rad(M)) is
irreducible, then the prime radical rad(M/rad(M)) = rad(M) € Spec;
(M/rad (M)) is a fully invariant meet-prime submodule of an openly
regular module p M /rad(M). Therefore we obtain a prime ideal 774(M)
= I° = 0 < T of the endomorphism ring of M /rad(M). Therefore the
endomorphism ring T is a prime ring. ]

THEOREM 7.9. For an openly regular module p M with the prime
radical rad(M), if {I*|L € Spec;(M /rad(M))} is open dense in Spec(T),
where T = Endp(M /rad(M}) is the endomorphism ring of the quotient
module g M /rad(M), the following are equivalent:

(1) The endomorphism ring Endg(M/rad(M)) is not prime;
(2) The prime spectrum Spec(T) is reducible;

(3) The Image spectrum Spec;(M/rad(M)) is reducible;

{4) The prime radical rad(M) of rM is not meet-prime.

THEOREM 7.10. For an openly regular module g M with rad(M) = 0,
if {IP|P € Spec;(M)} is open dense in Spec(S), then the following are
equivalent:

(1) The endomorphism ring S is prime;

(2) The prime spectrum Spec(S) is irreducible;
(3} The image spectrum Spec;(M) is irreducible;
(4} O is meet-prime.

Proof. Replacing rad(M) with 0 in the above Theorem 7.7, the proof
is completed. ]
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THEOREM 7.11. For an openly regular module g M with rad(M) = 0,
if {IT{P € Spec;(M)} is open dense in Spec(S), then the following are
equivalent:

(1) The endomorphism ring S is not prime;
(2) The prime spectrum Spec(S) is reducible;
(3) The image spectrum Spec; (M) is reducible;
(4) 0 is not meet-prime.

8. Zariski kernel(null) topologies for closedly regular mod-
ules

A module rpM is said to be closedly regular if for any submodules

C, D < M, the following properties are satisfied:
(1) € < D implies that C < D,
(2) € =D implies that C < D or D < C.

Clearly any self-cogenerated module is closedly regular. There are
closedly regular modules which are not self-cogenerated, for example, a
closedly regular left Z[x]—module zZ(p™)[z] has non-closed submod-
ules z”Z(p*°)[z] (n € N, where N is the set of natural numbers) including
the trivial submodule Z(p™)[x] = z*Z(p>)lz]. Also {z"Z{(p*)[z] | n €
N} is linearly ordered.

Let & be the set of all closed submodules of g M with a reversing order
of set inclusion, then by the Zorn’s lemma there are maximal submodules
among closed submodules of g M, being closed fully invariant sum-prime
submodules of g M. Thus it follows that

S = {Q < M| Q is a sum-prime submodule of gM} # 0
but
{Q < M | 0 # @ is a nonzero sum-prime submodule of M }A£D

is not held, in general. With a risk of being empty set, we will introduce
a topological space on the set of all nonzero fully invariant sum-prime
submodules of any closedly regular module over any ring as follows.

Let E = {P, # 0|, is a nonzero fully invariant sum-prime submodule
of gkM} be the set of all non-zero fully invariant sum-prime submodules
of M. Then we have the following propostition.
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ProprosiTioN 8.1. For a closedly regular left R—module gk M, E is a
topological space, if as closed sets we take all sets of form
w(E)={P€Z|PCE}
where ! C M is any subset of gkM. Precisely, the sets w(FE) satisfy the
axioms for closed sets in a topological space:
(1} For any subset £ C M, if (E)} is the submodule of M gener-
ated by E, then w(E) = w({E)) = w(soc(E)), where soc(E) =
> Eop, ez Pu is the prime socle of E.
(2) w(M) = w(soc(M)) =2, w(0) =0
(3) w(NierB) = Nicyw(E;) for E; C M(i € I).
(4) w(AUB) =w{{A) + {B)) =w(A) Uw(B) for A, B C M.

Proof. (4): Trivially it is true that w({A} + (B)) = w(A4) Uw(B) C
w(AU B). It remains to show that w(AU B) C w({A) + (B)) = w(A) U
w(B). Let P be any sum-prime submodule of M such that P < AUB,
then P < (A} + (B) < (A) + (B) and then P < {4) or P < (B) by
(2) of the Lemma 5.2. Since pM is closedly regular and since P <
(A) + (B) <= P < (A) + (B) we have that P < A or P < B(otherwise
if P> {A4) and if P > (B), then P > {4) + (B) = {AU B) and it is
contradicted to P < AU B.) Thus we have w(AU B) C w((A4) + (B)} =
w(A) Uw(B). O

PROPOSITION 8.2. = is a topological space, if as open sets we take
all sets of form TA={ P cZ|PZ A}, where AC M is any subset of
M.

Before a proof, it is convenient to note that
TA={PeE|PLA}={PeE|PL£{A)},
where A is any subset of M and {A) is the submodule of gM generated
by the set A. Additionally notice that for any subset A of zM

TA =Ugcata

= UCLGAT<G'>

=7(>_{a})

acA
={PcE|P¢ A}
={PcE|PL£{A)}
= T(NpygaPs),
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for which Pj5 is a non-zero closed fully invariant sum-prime submodule
of RM .

Proof. The similar proof of the proposition 6.2 completes the proof.C]

The resulting topology is called the Zariski kernel(or null) topology
for pM named after the Zariski topology on the prime spectrum of a
commutative ring. The topological space Z is called the kernel(or null)
spectrum of M, denoted by Specy(M). Also we define the prime socle
soc(M) by the sum of all sum-prime submodules of M, in other words,
s0¢(M) = 3.p ¢z Pa (cf. the Socle Soc(M) the sum of all minimal
submodules of pM). Clearly in any closedly regular module it follows
easily that soc(M) < Soc{M).

If the prime socle soc{M) is a sum-prime submodule of M, then
Specy(M) ={ L #0| L <soc(M) } contains soc(M) since the prime
radical soc(M) is closed and fully invariant in p M.

THEOREM 8.3. For any closedly regular module g M, if a submodule
K > soc(M) of gM is in Specy{M), then we have that K = soc(M)
and Specy (M) is irreducible.

Proof. If K € Specy (M), then K is fully invariant sum-prime, then
the closed submodule K is also fully invariant sum-prime in gM. Thus
soc(M) < K < K € Specy(M) implies that soc(M) = K = K ¢
Specy(M). And every basic open set in the kernel(null) spectrum
Specy (M) contains soc{M), in other words, Specy (M) is irreducible.
And by the hypothesis of K > soc(M), we have a closed submodule
soc{M) = K which is in Spec(M). O

COROLLARY 8.4. For any closedly regular module g M, the following
are equivalent:
(1} Specy{M} is irreducible;
(2) soc(M) € Specny(M).

For any module rpM, we have a surjective mapping from the ker-
nel(null) spectrum Specy (M) onto a subset

{Ip | P € Specn (M)} C Spec(S)
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of the prime spectrum Spec(S) of the endomorphism ring S of R M.
Let this subspace {Ip|P € Specy (M)} be a topological subspace of the
Zariski topology of the spectrum Spec(S) of the endomorphism ring.
Then we have the next theorem.

LEMMA 8.5. For any closedly regular module pM let
Y = {Ip|P € Specn (M)} C Spec(S),
then we have the following.

(1) If Y is open in Spec(S) and if the prime spectrum Spec(S) is
irreducible. then the kernel(null) spectrum Specy(M) is irre-
ducible.

(2) If Y is dense in Spec(S) and if the kernel(null) spectrum
Specy (M) is irreducible, then the prime spectrum Spec(S) is
irreducible.

(3) IfY is open dense in Spec(S). Then the prime spectrum Spec(S)
is irreducible if and only if the kernel(null) spectrum Specy (M)
is irreducible.

Proof. (1): By the hypothesis of irreducibility of Spec(S), it follows
that its subspace is irreducible since the closure of an open set in the
subspace {Ip|P € Specy(M)} is the intersection of the closure of the
open set in Spec(S) and the subspace {Ip|P € Specy(M)} is inherited
from the Zariski topology. The Zariski kernel topology Specy (M) is the
same that the topology with an onto mapping P — Ip : Specny(M) - Y
satisfies that each basic open set contains preimage of a basic open set
in Y = {Ip|P € Specn (M)}. Therefore Specy (M) is also irreducible.

(2): Assume that the prime spectrum Spec(S) is reducible. Then
there are two nonempty disjoint open subsets in Spee(S) inducing two
disjoint nonempty open subsets in Y since Y is dense in Spec(S). There-
fore it follows easily that Specy (M) is reducible.

(3): From (1) and (2) it follows immediately. O

COROLLARY 8.6. For any openly regular module p M, if
{Ip|P € Specn (M)}
is open dense in Spec(S), then the following are equivalent:

(1) The prime spectrum Spec(S) is reducible;
(2) The kernel(null) spectrum Specy (M) is reducible.
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REMARK 8.7. The openness and density of {Ip|P € Specy(M)}
in the hypotheses of the Proposition 8.5 and Corollary 8.6 is essen-
tial. For example, a Z—module zZ{p*>) for a prime number p) has a
non-sum-prime submodule soc(Z(p™)} = Z(p™) ¢ Specy (Z(p™)), in
other words, {Ix|K is a nonzero fully invariant sum-prime submodule
of zZ(p>°)} is not an open set in the prime spectrum Spec(S) 3 0 =
Loz (p>))=z(p=). Considering a module zZ being a closely simple mod-
ule, then we have an empty set

Y = {Ip|P is a sum-prime submodule of Z} =0 C Spec(Endz(Z)).

And Y is reducible and Spec(Endz(Z)) is irreducible. Therefore without
the density of ¥ the reducibility of ¥ does not imply that of
Spec(Endz(Z)).

Considering the socle soc(M) < M as an R—submodule of any mod-
ule M, let T denote the endomorphism ring End g (soc{M)) of gsoc(M)}.

THEOREM 8.8. For a closedly regular module gM with the prime
socle soc(M), if {IL|L € Specny{soc(M))} is open dense in Spec(T),
where T' = Endg(soc(M)) is the endomorphism ring of the submodule
soc(M), the following are equivalent:

(1) The endomorphism ring Endg(soc(M)) is prime;

(2) The prime spectrum Spec(T') is irreducible;

(3) The kernel(null) spectrum Specy (soc(M)) is irreducible;
(4) The prime socle soc{M) of pM is sum-prime.

Proof. (1} = (2): It is trivial

(2) = (8): Assume (1), then the prime spectrum Spec(T') is irre-
ducible. Thus by the above Lemma 8.4 we have the irreducible ker-
nel(null) spectrum Specy (soc(M)).

(3) = (4): From Corollary 8.4 it follows immediately.

(4) = (1): Assume that the kernel(null) spectrum Specy (soc(M )} is
irreducible, then the prime socle soc(soc{M)) = soc(M)} € Specy (soc(M))
is a fully invariant sum-prime submodule of a closedly regular module
soc{M). Therefore we obtain a prime ideal Iooary = Ing = 0 QT of
the endomorphism ring of soc(M). Therefore the endomorphism ring T°
is a prime ring. O
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TuEOREM 8.9. For a closedly regular module gM with the prime
socle soc(M), if {I|L € Specy(soc(M))} is open dense in Spec(T),
where T = Endg(soc(M)) is the endomorphism ring of the submodule
soc(M), the following are equivalent:

(1) The endomorphism ring Endg(soc(M)) is not prime;

(2) The prime spectrum Spec(T'} is reducible;
(3) The kernel(null) spectrum Specy{soc(M)) is reducible;

(4) The prime socle soc(M) of gM is not sum-prime.

THEOREM 8.10. For a closedly regular module g M with soc(M) =
M, if {Ip|P € Specy (M)} is open dense in Spec(S), then the following
are equivalent:

(1) The endomorphism ring S is prime;

(2) The prime spectrum Spec(S) is irreducible;

(3) The kernel(null) spectrum Specy (M) is irreducible;
(4) rM is sum-prime.

Proof. Replacing soc(M) with M in the above Theorem 8.7, the proof
is completed. O

THEOREM 8.11. For a closedly regular module g M with soc(M) =
M, if {Ip|P € Specy(M)} is open dense in Spec(S), then the following
are equivalent:

(1) The endomorphism ring S is not prime;

(2) The prime spectrum Spec(S) is reducible;

(3) The kernel{null} spectrum Specy (M) is reducible;
(4) grM is not sum-prime.

9. Zariski topologies for commutators of rings

For a left R—module g M over a ring R, let Z denote the commutator
of the ground ring R over which gM is a left R—module,

that is, Z = {a € R | ar = ra, for each r € R}.

We are regarding any left multiplication by a € Z, denoted by pla) :
rM — gM defined by mp(a) = am for every element m € M as an
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endomorphism, in other words, p(Z) = {p(a) | « € Z} < Endp(M) is a
subring with identity of the endomorphism Endg(M). Moreover for any
left R—module gk M over a commutative ring R with identity, clearly it
follows that Z = R and p(R) = {p{r) | » € R} < Endg(M) is a subring
of the endomorphism Endg(M). Thus if P < pM is a meet-[resp. sum-
Jprime submodule of kM, we have a prime ideal I¥ M p(Z) [resp. Ip N
p(Z)] 9 p(Z) of the subring p(Z) of the endomorphism Endg(M), for
all modules over any ring R with identity.

It is wellknown that any commutative ring R can construct the
Zariski topology of the prime spectrum Spec(R) = {J Q9 R | J is a
prime ideal of R}, by the same method we can construct the Zariski
topology of the prime spectrum Spec(p(Z))}, if as closed sets we take all
sets of form v(E) = { I € Spec(p(Z)) | E C I }, where E is any subset
of p(Z). Precisely, the sets v(E) satisfy the axioms for closed sets in a
topological space:

(1) For any subset £ C p(Z), if (E) is the ideal of p(Z) gener-
ated by F, then v(E) = v((E)) = v(r(E)), where r(E) =
NECJ, eSpec(p(2)} Ja 18 the prime radical of E.

(2) v(0) = Spec(p(Z2)), v(p(2)} = 0.

(3) v(User ) = Nierv(E;), for each E; C p(Z).

{4) v(AB) =v(A)Uu(B) for A, B C p(Z).

THEOREM 9.1. For any module g M over a ring R with identity, the
following are equivalent:
(1) Spec(p(Z)) is irreducible;
(2) The prime radical rad(p(Z)) = Njespecipizy)J I8 in Spec(p(Z)),
that is, rad{p(Z)) is a prime ideal of p(Z).

In fact, it is true that the prime radical

rad(p(Z)) = Nespec(p(z))d = rad(S) N p(Z),

where rad(p(Z)) is the prime radical of p(Z) and rad(S) = Nyespec(s)J
is the prime radical of the endomorphism ring § of g M. The following
note is rewritten for a faithful module p M over a commutative ring R
in terms of p(Z) = R.
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NoTe 9.2. For (any faithful module g M over) a commutative ring
R with identity, the following are equivalent:
(1) Spec(R) is irreducible;
(2) The prime radical rad(R) = N egpec(r)) is in Spec(R), i.e.,
rad{R) is a prime ideal of R.

Since gM is faithful we can identify the subring p(Z) of S with the
ground ring K. Replace p(Z} by R.

10. On openly regular modules

For any fully invariant meet-prime submodule P < M of a module
rM, we have prime ideals I < .8 and I N p(Z) < p(2).

For any module g M, we have a surjective mapping from the image
spectrum Spec;{M} onto a subset { I” | P € Specr(M) } C Spec(S) of
the prime spectrum Spec(S) of the endomorphism ring S of g M. Also
we have a surjective mapping from the image spectrum Spec; (M) onto
{ I np(Z) | P € Spec;(M) } C Spec(p(Z)) of the prime spectrum
Spec(p(Z)) of the commutator ring p(Z) of a ring R with identity.

Let this subspace { I¥ | P € Spec;(M) } be inherited from the
Zariski topology of the spectrum Spec(S) of the endomorphism ring.
Then we have the next results. No proof will be given.

THEOREM 10.1. For any openly regular module g M if
{I? | P €Spec; (M)} and {I”Np(Z)| P € Spec; (M)}

are open dense sets in the prime spectra Spec(S) and Spec(p(Z)), re-
spectively, then the following are equivalent:

(1) The prime spectrum Spec(S) is irreducible;

(2) The image spectrum Specy (M) is irreducible;

(3) The prime spectrum Spec(p(Z)) is irreducible.

Note here if the commutator p{Z) is not a prime ring, then immedi-
ately follows that neither § nor R is a prime ring. Thus we have the
following corollary of the contraposition of Theorem 10.1 as follows:
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COROLLARY 10.2. For any openly regular module g M, if
{I7 | P ¢ Spec; (M)} and {I"Np(Z)| P € Specy(M) }

are open dense sets in the prime spectra Spec(S) and Spec(p(Z)), re-
spectively, then the following are equivalent:

(1) The prime spectrum Spec(S) is reducible;
(2) The image spectrum Spec;(M) is reducible;
(3) The prime spectrum Spec(p(Z)) is reducible.

REMARK 10.3. The opennesses and density of { IT | P € Spec; (M) }
and { I” N p(Z) | P € Spec;(M) } in the hypotheses of the Theorem
10.1 and Corollary 10.2 is essential.

THEOREM 10.4. For any openly regular module gM with rad(M) =
0, if { I” | P € Specy(M) } and { I¥ N p(Z) | P € Specy(M) } are open
dense sets in the prime spectra Spec(S) and Spec{p(Z)), respectively,
then the following are equivalent:

(1) The commutator p(Z) has a prime annihilator ideal Anng(M)N
p(Z);

(2) The endomorphism ring S is prime;

(3) The prime spectrum Spec(S} is irreducible;

(4) The prime spectrum Spec(p(Z)) Is irreducible;

(5) The image spectrum Spec;(M) is irreducible;

(6) 0 < M is meet-prime.

THEOREM 10.5. For any openly regular module g M with rad(M) =
0, if { I¥ | P € Spec)(M) } and { I" M p(Z) | P € Spec;(M) } are open
dense sets in the prime spectra Spec(S) and Spec{p(Z)), respectively,
then the following are equivalent:

(1) The commutator p(Z) has a nonprime ideal Anng (M) N p(Z);
(2) The endomorphism ring S is not prime;

(3) 0 is not meet-prime;

{4) The prime specirum Spec(S) is reducible;

(5) The prime spectrum Spec(p(Z)) is reducible;

(6) The image spectrum Spec;(M) Is reducible.
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For any faithful module g M, the annihilator Anng(M) = 0 is trivial.
Thus we have immediate consequences of Theorem 10.4 and Corollary
10.5 as follows.

COROLLARY 10.6. For any openly regular faithful module pM with
rad(M) =0, if { I¥ | P € Spec;(M) }and { I'Np(Z) | P € Spec; (M) }
are open dense sets in the prime spectra Spec(S) and Spec(p(Z)), re-
spectively, then the following are equivalent:

(1} The commutator p{Z) is prime;

(2) The endomorphism ring S is prime;

(3) The prime spectrum Spec(S) is irreducible;
(4} The prime spectrum Spec(p(Z)} is irreducible;
(5) The image spectrum Specy;(M) is irreducible;
(6) 0 < M is meet-prime.

CoOROLLARY 10.7. For any openly regular faithful module rp M with
rad(M) =0, if { I | P € Spec;(M) } and{ I'Np(Z) | P € Spec;(M) }
are open dense sets in the prime spectra Spec(S) and Spec(p{Z)), re-
spectively, then the following are equivalent:

(1) The commutator p(Z) is not prime;

(2) The endomorphism ring S Is not prime;

(3) 0 < M is not meet-prime;

{(4) The prime spectrum Spec(S) is reducible;
(5) The prime spectrum Spec(p(Z)) is reducible;
(6) The image spectruin Specy(M) is reducible,

11. On closedly regular modules

For any module pM, we have a surjective mapping from the ker-
nel(null) spectrum Specy (M) onto a subset { Ip | P € Specy (M) } C
Spec(S) of the prime spectrum Spec(S) of the endomorphism ring S of
M.

Also we have a surjective mapping from the kernel(null) spectrum
Specy (M) onto a subset { Ip Np(Z) | P € Specy (M) } C Spec(p(Z))
of the prime spectrum Spec{p(Z}) of the commutator of ring R.

Let this subspace { Ip | P € Specy{M)} } be inherited from the
Zariski topology of the spectrum Spec(S) of the endomorphism ring 5.
Then we have the next theorem.
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LemMMmA 11.1. For any closedly regular module g M, if { Ip | P €
Specy(M) } and { Ip N p{Z) | P € Specy (M) } are open dense sets in
the prime spectra Spec(S) and Spec(p(Z), respectively, then the follow-
ing are equivalent:

(1) The prime spectrum Spec(p(Z)) is irreducible;
(2) The prime spectrum Spec(S) is irreducible;
(3) The kernel(null) spectrum Specy (M) is irreducible.

COROLLARY 11.2. For any openly regular module gM, if { Ip | P €
Specy(M) } and { Ip N p(Z) | P € Specy(M) } are open dense sets
in the prime spectra Spec(S) and Spec(p(Z)), respectively, then the
following are equivalent:

(1) The prime spectrum Spec(p(Z)) is reducible;
(2) The prime spectrum Spec(S) is reducible;
(3) The kernel(null) spectrum Specy (M) is reducible.

REMARK 11.3. The opennesses and density of {Ip | P € Specy (M)}
and { Ip N p(Z) | P € Specy (M) } in the hypotheses of the Theorem
11.1 and Corollary 11.2 is essential.

THEOREM 11.4. For any closedly regular module g M with soc(M) =
M, if {Ip| P € Specy(M) } and { Ip N p(Z)} | P € Specy(M) } are
open dense sets in the prime spectra Spec(S) and Spec(p(Z)), respec-
tively, then the following are equivalent:

(1) The commutator p(Z) has a prime ideal Anng(M) N p(Z);
(2) The endomorphism ring S is prime;

(3) The prime spectrum Spec(§) is irreducible;

(4) The prime spectrum Spec{p(Z)) is irreducible;

(5) The kernel(null) spectrum Specy (M) is irreducible;

(6) M < M is sum-prime.

THEOREM 11.5. For any closedly regular module g M with soc(M) =
M,if{ Ip | P € Specny(M) } and { Ip N p(Z) | P € Specy(M) } are
open dense sets in the prime spectra Spec(S) and Spec(p(Z)), respec-
tively, then the following are equivalent:

(1) The commutator p(Z) has a nonprime ideal Anng(M) N p(Z);
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(2) The endomorphism ring S is not prime;

(3) The prime spectrum Spec(S) Is reducible;

(4) The prime spectrum Spec(p(Z)) is reducible;

(5) The kernel(null} spectrum Specy (M) is reducible;
(6) M < M is not sum-prime.

THEOREM 11.6. For any closedly regular faithful module M with

soc(M) = M, if { Ip | P € Specy(M) } and { IpnNp(Z) | P €
Specy(M) } are open dense sets in the prime spectra Spec(S) and
Spec(p(Z%)), respectively, then the following are equivalent:

(1) The commutator p(Z) is prime;

(2) The endomorphism ring S is prime;

(3) The prime spectrum Spec(S'} is irreducible;

(4) The prime spectrum Spec(p(Z)) is irreducible;

{(5) The kernel(null) spectrum Specy (M) Is irreducible;
(6) M < M is sum-prime.

THEOREM 11.7. For any closedly regular faithful module gk M with

soc(M) = M, if { Ip | P € Specy(M) } and { IpNp(Z) | P €
Specy (M) } are open dense sets in the prime spectra Spec(S) and
Spec(p(Z)), respectively, then the following are equivalent:

(1) The commutator p(Z} is not prime;

(2) The endomorphism ring S is not prime;

(3) The prime spectrum Spec(S) is reducible;
(4) The kernel{null) spectrum Specy (M) is reducible;
(5) The prime spectrum Spec(p(Z)) is reducible;

(6) M < M is not sum-prime.
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