DOI QR코드

DOI QR Code

ON THE EXTENSION DIMENSION OF MODULE CATEGORIES

  • Peng, Yeyang (Department of Mathematics Nanjing University) ;
  • Zhao, Tiwei (School of Mathematical Sciences Qufu Normal University)
  • Received : 2019.10.08
  • Accepted : 2020.03.05
  • Published : 2020.11.01

Abstract

Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.

Keywords

References

  1. A. Beligiannis, Some ghost lemmas, survey for 'The representation dimension of Artin algebras', Bielefeld 2008; http://www.mathematik.uni-bielefeld.de/-sek/2008/ghosts.pdf.
  2. A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36, 258. https://doi.org/10.17323/1609-4514-2003-3-1-1-36
  3. H. Dao and R. Takahashi, The radius of a subcategory of modules, Algebra Number Theory 8 (2014), no. 1, 141-172. https://doi.org/10.2140/ant.2014.8.141
  4. F. Huard, M. Lanzilotta, and O. Mendoza Hernandez, Layer lengths, torsion theories and the finitistic dimension, Appl. Categ. Structures 21 (2013), no. 4, 379-392. https://doi.org/10.1007/s10485-011-9268-x
  5. O. Iyama, Rejective subcategories of Artin algebras and orders, arXiv:math/0311281, 2003.
  6. J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259. http://projecteuclid.org/euclid.pjm/1102995279 https://doi.org/10.2140/pjm.1965.15.1249
  7. S. Oppermann, Lower bounds for Auslander's representation dimension, Duke Math. J. 148 (2009), no. 2, 211-249. https://doi.org/10.1215/00127094-2009-025
  8. R. Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006), no. 2, 357-367. https://doi.org/10.1007/s00222-006-0499-7
  9. R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2, 193-256. https://doi.org/10.1017/is007011012jkt010
  10. B. Stenstrom, Rings of Quotients, Springer-Verlag, New York, 1975.
  11. J. Wei, Finitistic dimension and Igusa-Todorov algebras, Adv. Math. 222 (2009), no. 6, 2215-2226. https://doi.org/10.1016/j.aim.2009.07.008
  12. J. Zheng, X. Ma, and Z. Huang, The extension dimension of abelian categories, Algebr. Represent. Theor. (2019); https://doi.org/10.1007/s10468-019-09861-z