• Title/Summary/Keyword: index polynomial

Search Result 112, Processing Time 0.034 seconds

SOME POLYNOMIAL INVARIANTS OF WELDED LINKS

  • IM, YOUNG HO;LEE, KYEONGHUI;SHIN, MI HWA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.929-944
    • /
    • 2015
  • We give a quotient of the ring ${\mathbb{Q}}[A^{{\pm}1},\;t^{{\pm}1]$ so that the Miyazawa polynomial is a non-trivial invariant of welded links. Furthermore we show that this is also an invariant under the other forbidden move $F_u$, and so it is a fused isotopy invariant. Also, we give some quotient ring so that the index polynomial can be an invariant for welded links.

Polynomials and Homotopy of Virtual Knot Diagrams

  • Jeong, Myeong-Ju;Park, Chan-Young;Park, Maeng Sang
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.145-161
    • /
    • 2017
  • If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic. There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot diagrams.

The polynomial factorization over GF($2^n$) (GF($2^n$) 위에서의 다항식 일수분해)

  • 김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 1999
  • The public key crytptosystem is represented by RSA based on the difficulty of integer factorization and ElGamal cryptosystem based on the intractability of the discrete logarithm problem in a cyclic group G. The index-calculus algorithm for discrete logarithms in GF${$q^n$}^+$ requires an polynomial factorization. The Niederreiter recently developed deterministic facorization algorithm for polynomial over GF$q^n$ In this paper we implemented the arithmetic of finite field with c-language and gibe an implementation of the Niederreiter's algorithm over GF$2^n$ using normal bases.

POLYNOMIAL FACTORIZATION THROUGH Lγ(μ) SPACES

  • Cilia, Raffaella;Gutierrez, Joaquin M.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1293-1307
    • /
    • 2009
  • We give conditions so that a polynomial be factorable through an $L_{\gamma}({\mu})$ space. Among them, we prove that, given a Banach space X and an index m, every absolutely summing operator on X is 1-factorable if and only if every 1-dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated homogeneous polynomial on X is right and left 1-factorable.

The Polynomial Numerical Index of Lp(μ)

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • We show that for 1 < $p$ < ${\infty}$, $k$, $m{\in}\mathbb{N}$, $n^{(k)}(l_p)=inf\{n^{(k)}(l^m_p):m{\in}\mathbb{N}\}$ and that for any positive measure ${\mu}$, $n^{(k)}(L_p({\mu})){\geq}n^{(k)}(l_p)$. We also prove that for every $Q{\in}P(^kl_p:l_p)$ (1 < $p$ < ${\infty}$), if $v(Q)=0$, then ${\parallel}Q{\parallel}=0$.

SOME GROWTH ASPECTS OF SPECIAL TYPE OF DIFFERENTIAL POLYNOMIAL GENERATED BY ENTIRE AND MEROMORPHIC FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH ORDERS

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.899-927
    • /
    • 2019
  • In this paper we establish some results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q)-th order and relative (p, q)-th lower order where p, q are any two positive integers and that of a special type of differential polynomial generated by one of the factors.

Self-Tuning Control of Multivariable System (다변수 시스템의 자기동조제어)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.69-78
    • /
    • 1999
  • In the single-input and single-output system, the parameter of plant is scalar polynomial, but in the multiple input and multiple output, it accompanies, being matrix polynomial, the consideration of observable controlability index or problems non-commutation in matrix polynomial as well as degree, and it is more complex to deal with. Therefore, it is thought that a full research on the single-input and single-output system is not sufficient. This paper proposes that problems of minimum variance self-tuning regulator by using numerical calculation example of multivariable system and pole assignment self-tuning regulator.

  • PDF

THE MINIMAL POLYNOMIAL OF cos(2π/n)

  • Gurtas, Yusuf Z.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.667-682
    • /
    • 2016
  • In this article we show a recursive method to compute the coefficients of the minimal polynomial of cos($2{\pi}/n$) explicitly for $n{\geq}3$. The recursion is not on n but on the coefficient index. Namely, for a given n, we show how to compute ei of the minimal polynomial ${\sum_{i=0}^{d}}(-1)^ie_ix^{d-i}$ for $i{\geq}2$ with initial data $e_0=1$, $e_1={\mu}(n)/2$, where ${\mu}(n)$ is the $M{\ddot{o}}bius$ function.

Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law

  • Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.129-139
    • /
    • 2020
  • In this piece of work, carbon nanotubes motion equations are framed by Kelvin's method. Employment of the Kelvin's method procedure gives birth to the tube frequency equation. It is also exhibited that the effect of frequencies is investigated by varying the different index of polynomial function. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported and these frequency curves are higher than that of clamped-free curves. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes.