DOI QR코드

DOI QR Code

The Polynomial Numerical Index of Lp(μ)

  • Kim, Sung Guen (Department of Mathematics, Kyungpook National University)
  • Received : 2012.07.11
  • Accepted : 2012.08.23
  • Published : 2013.03.23

Abstract

We show that for 1 < $p$ < ${\infty}$, $k$, $m{\in}\mathbb{N}$, $n^{(k)}(l_p)=inf\{n^{(k)}(l^m_p):m{\in}\mathbb{N}\}$ and that for any positive measure ${\mu}$, $n^{(k)}(L_p({\mu})){\geq}n^{(k)}(l_p)$. We also prove that for every $Q{\in}P(^kl_p:l_p)$ (1 < $p$ < ${\infty}$), if $v(Q)=0$, then ${\parallel}Q{\parallel}=0$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.
  2. F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
  3. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54 (1996), 135-147. https://doi.org/10.1112/jlms/54.1.135
  4. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc., 49 (2006), 39-52.
  5. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand., 103 (2008), 97-110. https://doi.org/10.7146/math.scand.a-15071
  6. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
  7. J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc., 2 (1970), 481-488.
  8. S. G. Kim, Norm and numerical radius of 2-homogeneous polynomials on the real space $\int_{p}^{2}$ , (1 < p < $\infty$), Kyungpook Math. J., 48 (2008), 387-393. https://doi.org/10.5666/KMJ.2008.48.3.387
  9. S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. Royal Irish Acad., 112A (2012), 21-35.
  10. S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces $c_0$, $\ell_1$, ${\ell}_{\infty}$, J. Math. Anal. Appl., 337 (2008), 98-106. https://doi.org/10.1016/j.jmaa.2007.03.101
  11. H. J. Lee, Banach spaces with polynomial numerical index 1, Bull. Lond. Math. Soc., 40 (2008), 193-198. https://doi.org/10.1112/blms/bdm113
  12. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43. https://doi.org/10.1090/S0002-9947-1961-0133024-2

Cited by

  1. Generalized Numerical Index and Denseness of Numerical Peak Holomorphic Functions on a Banach Space vol.2013, 2013, https://doi.org/10.1155/2013/380475