Browse > Article
http://dx.doi.org/10.5666/KMJ.2013.53.1.117

The Polynomial Numerical Index of Lp(μ)  

Kim, Sung Guen (Department of Mathematics, Kyungpook National University)
Publication Information
Kyungpook Mathematical Journal / v.53, no.1, 2013 , pp. 117-124 More about this Journal
Abstract
We show that for 1 < $p$ < ${\infty}$, $k$, $m{\in}\mathbb{N}$, $n^{(k)}(l_p)=inf\{n^{(k)}(l^m_p):m{\in}\mathbb{N}\}$ and that for any positive measure ${\mu}$, $n^{(k)}(L_p({\mu})){\geq}n^{(k)}(l_p)$. We also prove that for every $Q{\in}P(^kl_p:l_p)$ (1 < $p$ < ${\infty}$), if $v(Q)=0$, then ${\parallel}Q{\parallel}=0$.
Keywords
Homogeneous polynomials; polynomial numerical index;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc., 49 (2006), 39-52.
2 Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand., 103 (2008), 97-110.   DOI
3 S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
4 J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc., 2 (1970), 481-488.
5 S. G. Kim, Norm and numerical radius of 2-homogeneous polynomials on the real space $\int_{p}^{2}$ , (1 < p < $\infty$), Kyungpook Math. J., 48 (2008), 387-393.   과학기술학회마을   DOI   ScienceOn
6 S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. Royal Irish Acad., 112A (2012), 21-35.
7 S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces $c_0$, $\ell_1$, ${\ell}_{\infty}$, J. Math. Anal. Appl., 337 (2008), 98-106.   DOI   ScienceOn
8 H. J. Lee, Banach spaces with polynomial numerical index 1, Bull. Lond. Math. Soc., 40 (2008), 193-198.   DOI   ScienceOn
9 G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43.   DOI   ScienceOn
10 F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
11 Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54 (1996), 135-147.   DOI
12 F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.