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THE MINIMAL POLYNOMIAL OF cos(2π/n)

Yusuf Z. Gürtaş

Abstract. In this article we show a recursive method to compute the co-
efficients of the minimal polynomial of cos(2π/n) explicitly for n ≥ 3. The
recursion is not on n but on the coefficient index. Namely, for a given n,

we show how to compute ei of the minimal polynomial
∑

d

i=0(−1)ieixd−i

for i ≥ 2 with initial data e0 = 1, e1 = µ(n)/2, where µ(n) is the Möbius
function.

1. Introduction

Finding the minimal polynomial of cos(2π/n) is an old problem due to its
connection to the cyclotomic polynomials. Recall that the unique irreducible
polynomial with integer coefficients having e2πi/n as one of its roots is called
the nth cyclotomic polynomial Φn(x). It’s well known that the other roots of
Φn(x) are e2kπi/n where 1 ≤ k < n and (k, n) = 1. Therefore

Φn(x) =
∏

k<n
(k, n)=1

(

x− e2kπi/n
)

.(1.1)

It follows from (1.1) that the degree of Φn(x) is φ(n), Euler’s totient function.
Therefore e2kπi/n is an algebraic integer of degree φ(n) for 1 ≤ k < n and
(k, n) = 1. It follows that e2kπi/n + e−2kπi/n = 2 cos(2kπ/n) is an algebraic in-
teger of degree φ(n)/2 as shown by D. H. Lehmer in 1933 ([5]). In other words
it satisfies a monic irreducible polynomial fn(x) of degree d with integer coeffi-
cients, where d = φ(n)/2. Therefore cos(2πk/n) is an algebraic number since it
satisfies the monic irreducible polynomial 1

2d fn(2x) with rational coefficients,
which is called the minimal polynomial of cos(2πk/n). K. W. Wegner gave a
short list of fn(2x) in 1957 and 1959 ([10, 11]). In 1993 W. Watkins and J.
Zeitlin found some identities satisfied by the minimal polynomial of cos(2kπ/n)
using Chebyshev polynomials of the first kind ([9]). D. Surowski and P. Mc-
Combs reproved those identities using a different method and gave an explicit
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formula for the minimal polynomial of cos(2π/p), where p is prime, in 2003,
[7]. S. Beslin and V. De Angelis also gave an explicit formula for the minimal
polynomial of cos(2π/p) as well as sin(2π/p), where p is prime, in 2004, [1].

In this article we show a method to compute the coefficients of the minimal
polynomial of cos(2π/n) explicitly for all n ≥ 3. The method is recursive but
recursion is not on n. For a given n, we show how to compute the coefficients ei
of the minimal polynomial

∑d
i=0(−1)ieix

d−i of cos(2π/n) for i ≥ 2 with initial
data e0 = 1, e1 = µ(n)/2, where µ(n) is the Möbius function. The method uses
power sum functions and Ramanujan sums, [3], pg 97. Lemma 2.1 shows how
these two functions are related. The third section establishes the recursion on
the coefficients of the minimal polynomial of cos(2π/n), which is demonstrated
for n = 66 as an example. There are also two theorems for some special cases.
One shows the connection between the cases of q and 2q where q is odd. The
other shows that the minimal polynomial is an even function when n = 4k.

2. Main section

Let n ≥ 3. Define

(2.1)
Sn = { k | (k, n) = 1, 1 ≤ k < n} and

Sn/2 = { k | (k, n) = 1, 1 ≤ k < n/2}.

It’s a well known fact that |Sn| = φ(n) and
∣

∣Sn/2

∣

∣ = φ(n)/2. The other roots
of the minimal polynomial of cos(2π/n) are cos(2πk/n) for k ∈ Sn/2 as shown
in [9]. Therefore the minimal polynomial of cos(2π/n) is given as

∏

k∈Sn/2

(x − cos(2πk/n)).(2.2)

If the minimal polynomial of 2 cos(2πk/n) is fn(x), then (2.2) is 1
2d
fn(2x),

where d = φ(n)/2. In order to avoid rational coefficients we will work on the
coefficients of fn(2x), which will be denoted from this point on by Ψn(x).
Namely we will be computing the coefficients of

Ψn(x) =
∏

k∈Sn/2

2(x− cos(2πk/n)).(2.3)

Let 1, k2, . . . , kd be the elements of Sn/2 in increasing order and r1, r2, . . . , rd
be the corresponding roots in (2.3). Namely, assume

Ψn(x) =

d
∏

k=1

2(x− rk).
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Recall the definition of the elementary symmetric polynomials:

e0(x1, . . . , xm) = 1,

e1(x1, . . . , xm) = x1 + x2 + · · ·+ xm,

e2(x1, . . . , xm) =
∑

1≤i<j≤m

xixj ,

...

em(x1, . . . , xm) = x1x2 · · ·xm.

(2.4)

Also define the kth power sum function as

pk(x1, . . . , xm) =

m
∑

i=1

xk
i = xk

1 + xk
2 + · · ·+ xk

m.

It’s possible to write the elementary symmetric polynomials en in terms of
power sum functions pk, [6], as

en =
1

n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p1 1 0 · · ·
p2 p1 2 0 · · ·
...

. . .
. . .

pn−1 pn−2 · · · p1 n− 1

pn pn−1 · · · p2 p1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(2.5)

Now, since

Ψn(x) =
d
∏

k=1

2(x− rk) = 2d
d
∑

i=0

(−1)iei(r1, . . . , rd)x
d−i

all we have to do is compute ei for 1 ≤ i ≤ d, which comes down to determining
pk(r1, . . . , rd) for 1 ≤ k ≤ d thanks to (2.5).

Recall Ramanujan’s trigonometric sum

cn(m) =
∑

k∈Sn

e2πikm/n.(2.6)

It’s not difficult to show that (2.6) reduces to

cn(m) =
∑

k∈Sn

cos
2πkm

n
,(2.7)

(see [8], pg 99 for a proof). Here we observe that (n, k) = 1 for 1 ≤ k < n
is equivalent to (n, n − k) = 1. Therefore both cos(2πkm/n) and cos(2π(n −
k)m/n) appear in the sum (2.7) because k ∈ Sn and n− k ∈ Sn. Since

(2.8) cos(2π(n− k)/n) = cos(2π − 2πk/n) = cos(−2πk/n) = cos(2πk/n)
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(2.7) can be rewritten as

cn(m) =
∑

k∈Sn

cos
2πkm

n
= 2

∑

k∈Sn/2

cos
2πkm

n
.(2.9)

On the other hand we also have

cn(m) =
∑

k|d

kµ(n/k),(2.10)

where d =gcd(n,m) and µ is the Möbius function, (see [3], pg 99 for a proof).
For example setting m = 1 in (2.10) and using (2.9) we obtain

cn(1) =
∑

k|1

kµ(n/k) = µ(n) =
∑

k∈Sn

cos
2πk

n
= 2

d
∑

k=1

rk.(2.11)

Thus, we can conclude that

p1(r1, . . . , rd) = e1(r1, . . . , rd) =
1

2
µ(n).(2.12)

If we let θk = 2πk/n we can write

cn(m) = 2
∑

k∈Sn/2

cos(mθk) = 2
∑

k∈Sn/2

Tm (cos θk) = 2

d
∑

k=1

Tm (rk) ,(2.13)

where Tm(x) is the Chebyshev polynomial of the first kind. There are several
equivalent definitions of Tm(x). The one that we will use here is

Tm(x) =
m

2

⌊m/2⌋
∑

j=0

(−1)j
(m− j − 1)!

(m− 2j)!j!
(2x)m−2j ,(2.14)

which can be found in [2]. Now we can write (2.13) as

1

2
cn(m) =

d
∑

k=1

⌊m/2⌋
∑

j=0

(−1)jm 2m−2j−1 (m− j − 1)!

(m− 2j)!j!
rm−2j
k

= 2m−1
d
∑

k=1

rmk +

⌊m/2⌋
∑

j=1

(−1)jm 2m−2j−1 (m− j − 1)!

(m− 2j)!j!

d
∑

k=1

rm−2j
k

(2.15)

by releasing the j = 0 term. Using the definition of pk(r1, . . . , rd) and dropping
the variables r1, . . . , rd (2.15) can be rewritten as

1

2
cn(m) = 2m−1pm +

⌊m/2⌋
∑

j=1

(−1)jm 2m−2j−1 (m− j − 1)!

(m− 2j)!j!
pm−2j.
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Solving the last equation for pm yields

pm =
1

2m
cn(m)−

⌊m/2⌋
∑

j=1

(−1)jm 2−2j (m− j − 1)!

(m− 2j)!j!
pm−2j,(2.16)

which is a recursive definition for pm. The following lemma shows how to
express pm explicitly in terms of the Ramanujan sums. Recall that cn(1) =
µ(n). Also note that (2.10) doesn’t make sense for m = 0 but we will extend
the definition to m = 0 as cn(0) = d for convenience even though (2.9) suggests
that cn(0) = 2d.

Lemma 2.1. The power sum function pm defined on variables r1, . . . , rd can

be written in terms of the Ramanujan sums cn(m) as

pm(r1, . . . , rd) =
1

2m

⌊m/2⌋
∑

j=0

(

m

j

)

cn(m− 2j).(2.17)

Proof. We’ll prove the lemma using induction on m. If we set m = 0, then
(2.17) gives p0 = cn(0) = d, which agrees with the definition of p0. If we let
m = 1, then (2.17) gives

p1(r1, . . . , rd) =
1

2
cn(1),

which is in agreement with (2.12). If m = 2, then (2.17) yields

p2(r1, . . . , rd) =
1

4
cn(2) +

1

4
2cn(0) =

1

4
cn(2) +

d

2
(2.18)

and (2.16) yields

p2 =
1

4
cn(2)− (−1)2 · 2−2 (2 − 1− 1)!

(2− 2)!1!
p0

=
1

4
cn(2) +

1

2
p0 =

1

4
cn(2) +

d

2
,

because p0 = d. We also need to check m = 3, which gives

p3(r1, . . . , rd) =
1

8
cn(3) +

1

8
3cn(1) =

1

8
cn(3) +

3

8
µ(n)(2.19)

in (2.17) and

p3 =
1

23
cn(3)− (−1)3 · 2−2 (3− 1− 1)!

(3 − 2)!1!
p1

=
1

8
cn(3) +

3

4
p1 =

1

8
cn(3) +

3

8
µ(n)
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in (2.16). Assume now m ≥ 4 and (2.17) is true for integers less than m.
Substituting pm−2j in (2.16) using the induction assumption yields:

pm =
1

2m
cn(m)−

⌊m/2⌋
∑

j=1

(−1)jm 2−2j (m− j − 1)!

(m− 2j)!j!

1

2m−2j

⌊(m−2j)/2⌋
∑

i=0

(

m− 2j

i

)

cn(m− 2j − 2i)

=
1

2m
cn(m) +

⌊m/2⌋
∑

j=1

(m− j − 1)!

(m− 2j)!j!

(−1)j+1m

2m

⌊m/2⌋−j
∑

i=0

(

m− 2j

i

)

cn(m− 2j − 2i).

(2.20)

We need to make sure that the coefficients in (2.17) and (2.20) match. Clearly
the coefficient of cn(m) is 1/2m in both. Let t = j + i and let’s compute the
coefficient of cn(m − 2t) for a fixed value of t where 0 < t ≤ ⌊m/2⌋ in (2.20).
This can be achieved through a summation where j runs from 1 to t and i is
replaced by t− j, namely cn(m− 2t) with its coefficient is

t
∑

j=1

(m− j − 1)!

(m− 2j)!j!

(−1)j+1m

2m

(

m− 2j

t− j

)

cn(m− 2t).(2.21)

Simplifying the coefficients in (2.21) further we obtain

(m− j − 1)!

(m− 2j)!j!

(−1)j+1m

2m

(

m− 2j

t− j

)

=
(m− j − 1)!

(m− 2j)!j!

(−1)j+1m

2m
(m− 2j)!

(t− j)!(m− t− j)!

=
(m− j − 1)!

(t− j)!(m− t− j)!j!

(−1)j+1m

2m
.

Now, the task comes down to showing the equality

t
∑

j=1

(m− j − 1)!

(t− j)!(m− t− j)!j!

(−1)j+1m

2m
=

1

2m

(

m

t

)

for 0 < t ≤ ⌊m/2⌋ for a given m ≥ 4 using (2.17), in other words, showing that

t
∑

j=1

(−1)j+1m(m− j − 1)!

j!(t− j)!(m− t− j)!
=

(

m

t

)

.(2.22)

We will proceed by equating the denominators on the left. The common
denominator is t!(m− t)! as we can see from the right hand side.

t
∑

j=1

(

t

j

)(

m− t

j

)

(−1)j+1m(m− j − 1)!j!

t!(m− t)!
=

(

m

t

)

.(2.23)

Canceling the denominators and dividing by m results in

t
∑

j=1

(−1)j+1

(

t

j

)(

m− t

j

)

(m− j − 1)!j! = (m− 1)!.(2.24)
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Finally dividing by (m− 1)! yields

t
∑

j=1

(−1)j+1

(

t

j

)(

m− t

j

)(

m− 1

j

)

−1

= 1.(2.25)

Now, we can simplify two of the combination terms and write them as a prod-
uct:

(

m− t

j

)(

m− 1

j

)

−1

=

j
∏

i=1

m− t− i+ 1

m− i
.

Then (2.25) becomes

t
∑

j=1

(−1)j+1

(

t

j

) j
∏

i=1

m− t− i+ 1

m− i
= 1.(2.26)

Next, we multiply and divide the left hand side by
∏t

i=j+1(m − i) and then

multiply both sides of the equation by
∏t

i=1(m− i). The result is

t
∑

j=1

(−1)j+1

(

t

j

) j
∏

i=1

(m− t− i+ 1)
t
∏

i=j+1

(m− i) =
t
∏

i=1

(m− i).(2.27)

If t = 1, then both sides of (2.27) are equal to m− 1. Let’s assume now 1 < t.
Note that for every value of j the first product on the left hand side produces
(m − t) when i = 1. Therefore we can cancel out (m − t) from both sides of
(2.27) and adjust the indices accordingly to get

t
∑

j=1

(−1)j+1

(

t

j

) j
∏

i=2

(m− t− i + 1)

t
∏

i=j+1

(m− i) =

t−1
∏

i=1

(m− i).(2.28)

Combining the two products into one on the left hand side and adjusting the
index i after that yields

t
∑

j=1

(−1)j+1

(

t

j

) t+j−1
∏

i=j+1

(m− i) =

t−1
∏

i=1

(m− i),

t
∑

j=1

(−1)j+1

(

t

j

) t−1
∏

i=1

(m− i− j) =

t−1
∏

i=1

(m− i).

(2.29)

We can move the product on the right hand side to the left and write the result
as

t
∑

j=0

(−1)j+1

(

t

j

) t−1
∏

i=1

(m− i− j) = 0.(2.30)
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Now the task is showing the equality in (2.30). Combining the first two terms
on the left hand side of (2.30) gives

−
t−1
∏

i=1

(m− i) + t

t−1
∏

i=1

(m− i− 1) = (−1 + t)(m− t− 1)

t−1
∏

i=2

(m− i).(2.31)

Adding the j = 2 term of (2.30) to the sum in (2.31) yields

(−1 + t)(m− t− 1)

t−1
∏

i=2

(m− i)−
(

t

2

) t−1
∏

i=1

(m− i− 2)

=

(

−1 + t−
(

t

2

))

(m− t− 1)(m− t− 2)

t−1
∏

i=3

(m− i)

=





2
∑

j=0

(−1)j+1

(

t

j

)





(

2
∏

i=1

(m− t− i)

)(

t−1
∏

i=3

(m− i)

)

.

(2.32)

Suppose that combining the first k terms on the left hand side of (2.30) is given
by





k−1
∑

j=0

(−1)j+1

(

t

j

)





(

k−1
∏

i=1

(m− t− i)

)(

t−1
∏

i=k

(m− i)

)

.(2.33)

If we add the j = k term of (2.30) to the sum in (2.33) we obtain




k−1
∑

j=0

(−1)j+1

(

t

j

)





(

k−1
∏

i=1

(m− t− i)

)(

t−1
∏

i=k

(m− i)

)

+ (−1)k+1

(

t

k

) t−1
∏

i=1

(m− i− k).

(2.34)

The common factors of (2.34) are
(

k−1
∏

i=1

(m− t− i)

)(

t−1
∏

i=k+1

(m− i)

)

(2.35)

and factoring them out of (2.34) leaves




k−1
∑

j=0

(−1)j+1

(

t

j

)



 (m− k) + (−1)k+1

(

t

k

)

(m− t),(2.36)

which can be rewritten as

(−1)k
(

t− 1

k − 1

)

(m− k) + (−1)k+1

(

t

k

)

(m− t)(2.37)
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using Lemma 2.3. Equating the denominators in (2.37) and simplifying the
result we obtain

k(−1)k(t− 1)!(m− k)

k!(t− k)!
+

(−1)k+1t!(m− t)

k!(t− k)!

=
(−1)k+1(t− 1)![−k(m− k) + t(m− t) ]

k!(t− k)!

=
(−1)k+1(t− 1)!(t− k)(m− k − t)

k!(t− k)!

= (−1)k+1

(

t− 1

k

)

(m− k − t)

=





k
∑

j=0

(−1)j+1

(

t

j

)



 (m− t− k)

using Lemma 2.3 once again. Now, putting this result and (2.35) together
yields





k
∑

j=0

(−1)j+1

(

t

j

)





(

k
∏

i=1

(m− t− i)

)(

t−1
∏

i=k+1

(m− i)

)

,(2.38)

which finishes the induction. If we set now k = t in the summation in (2.38)
we get 0 using Lemma 2.2 and this proves the equality in (2.30). �

Lemma 2.2. For t > 0 we have

t
∑

j=0

(−1)j+1

(

t

j

)

= 0.

Proof. The binomial expansion of (x+ y)t is

(x+ y)t =

t
∑

j=0

(

t

j

)

xt−jyj .(2.39)

Substitute x = 1, y = −1 in (2.39) and multiply the result by −1. �

Lemma 2.3. For 0 ≤ k ≤ t we have

k
∑

j=0

(−1)j+1

(

t

j

)

= (−1)k+1

(

t− 1

k

)

.(2.40)

Proof. If k = 0, then both sides of (2.40) are equal to −1. If k = t, then the
result follows from Lemma 2.2. Suppose now 0 < k < t and (2.40) is true.
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Then

k+1
∑

j=0

(−1)j+1

(

t

j

)

=

k
∑

j=0

(−1)j+1

(

t

j

)

+ (−1)k
(

t

k + 1

)

= (−1)k+1

(

t− 1

k

)

+ (−1)k
(

t

k + 1

)

= (−1)k+2

(

t− 1

k + 1

)

(2.41)

using the inductive hypotheses and the definition of the entries of Pascal tri-
angle. �

3. Results and examples

Using (2.12) we can conclude that the first two terms are

2d
(

xd − 1

2
µ(n)xd−1

)

= 2dxd − 2d−1µ(n)xd−1.(3.1)

Let’s write the rest of the terms of Ψn(x) as

2d
d
∑

i=2

(−1)ieix
d−i,

where ei are as defined in (2.5) in terms of power sum functions. Lemma 2.1
tells us how to compute the power sum functions in terms of the Ramanujan
sums.

Remark 3.1. Note that the matrix whose determinant yields ed, call it Md,
carries the information for all the coefficients of Ψn(x) starting with the term
of degree d− 2. However, computing the determinant of Md will be eventually
time consuming as n gets large. Therefore we need a way to avoid it. The
following Theorem allows us to define the coefficients of Ψn(x) recursively using
the leading two coefficients as the input. More precisely:

Theorem 3.2. Let Ψn(x) = 2d
∑d

i=0(−1)ieix
d−i, where e0 = 1 and e1 = µ(n)

2 .
Assume n > 4, n 6= 6. Then

ei =
1

i

i
∑

j=1

(−1)j−1pjei−j(3.2)

for i = 2, 3, . . . , d.
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Proof. The assumption on n is just to make sure that the degree is at least 2.
Let

Mi =































p1 1 0 0 0 · · · 0

p2 p1 2 0 0 · · · 0

p3 p2 p1 3 0 · · · 0

p4 p3 p2 p1 4 · · · 0

...
...

...
...

...
. . . 0

pi−1 pi−2 pi−3 pi−4 · · · p1 i− 1

pi pi−1 pi−2 pi−3 · · · p2 p1































for 2 ≤ i ≤ d and define M0 = 1,M1 = p1. It will suffice to show that

|Mi| =
i
∑

j=1

(−1)j−1pj
(i − 1)!

(i − j)!
|Mi−j |(3.3)

for 2 ≤ i ≤ d since |Mi| = i!ei by (2.5) and substituting this in (3.3) yields

i!ei =

i
∑

j=1

(−1)j−1pj
(i− 1)!

(i− j)!
|Mi−j |

=
i
∑

j=1

(−1)j−1pj
(i− 1)!

(i− j)!
(i− j)!ei−j

i!ei =

i
∑

j=1

(−1)j−1pj(i− 1)!ei−j(3.4)

and solving (3.4) for ei gives (3.2). Now, we will prove (3.3). Let i = 2. Then

|M2| =
∣

∣

∣

∣

∣

[

p1 1

p2 p1

]∣

∣

∣

∣

∣

= p21 − p2

and (3.3) gives

|M2| =
2
∑

j=1

(−1)j−1pj
(2− 1)!

(2− j)!
|M2−j|

= p1 |M1| − p2 |M0| = p21 − p2.

Assume now 2 < i ≤ d. To find the determinant of Mi we will expand it on the
last column:

|Mi| = p1 |Mi−1| − (i − 1) |Mi−1, i| ,(3.5)
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where Mi−1, i is the minor of Mi obtained by deleting row i− 1 and column i :

Mi−1, i =

























p1 1 0 · · · 0

p2 p1 2 · · · 0

p3 p2 p1 · · · 0

...
...

...
...

...

pi−2 pi−3 pi−4 · · · i− 2

pi pi−1 pi−2 · · · p2

























.

Expanding on the last column again we find

|Mi−1, i| = p2 |Mi−2| − (i− 2)
∣

∣

∣
(Mi−1, i)i−2, i−1

∣

∣

∣
,

where (Mi−1, i)i−2, i−1 is the minor of Mi−1, i obtained by deleting row i − 2

and column i− 1 :

(Mi−1, i)i−2, i−1 =

























p1 1 0 · · · 0

p2 p1 2 · · · 0

p3 p2 p1 · · · 0

...
...

...
...

...

pi−3 pi−4 pi−5 · · · i− 3

pi pi−1 pi−2 · · · p3

























.

Continuing this way and substituting our findings in (3.5) we obtain

|Mi| = p1 |Mi−1| − (i − 1)p2 |Mi−2|+ (i − 1)(i− 2)p3 |Mi−3| − · · ·(3.6)

+ (−1)i−3(i− 1) · · · 3 · pi−2 |M2|+ (−1)i−2(i− 1)!pi−1 |M1|
+ (−1)i−1(i− 1)!pi · 1,

which is the same as the expression in (3.3). The last two matrices in this
sequence are







p1 1 0

p2 p1 2

pi pi−1 pi−2






,

(

p1 1

pi pi−1

)

.

�

Another way of expressing cn(m) is

cn(m) = µ(um)
φ(n)

φ(um)
, where um =

n

gcd(n,m)
,(3.7)

(see [4], page 238, for a proof). The example that follows will make use of this
formula.
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Example 3.3. Let n = 66. Then φ(n) = 20 and d = 10. We have defined
e0 = 1, e1 = 1

2µ(n) = − 1
2 . Recall that cn(0) = d = 10, cn(1) = µ(n) = −1, and

p1 = e1 = 1
2µ(n) = − 1

2 . Now, what we need is pi and cn(i) for 2 ≤ i ≤ 10.
Using (3.7) we obtain

cn(2) = 1, cn(3) = 2, cn(4) = 1, cn(5) = −1,

cn(6) = −2, cn(7) = −1, cn(8) = 1, cn(9) = 2, cn(10) = 1

and using (2.17) we compute pi as

p2 =
21

4
, p3 = −1

8
, p4 =

65

16
, p5 = −1

2
, p6 =

219

64
,

p7 = − 1

128
, p8 =

769

256
, p9 = − 1

512
, p10 =

2771

1024
.

Now we can compute ei for 2 ≤ i ≤ 10 using (3.2):

e2 =
1

2
(p1e1 − p2e0) =

1

2

(

1

4
− 21

4

)

= −5

2
,

e3 =
1

3
(p1e2 − p2e1 + p3e0) =

1

3

(

1

2
· 5
2
+

21

4
· 1
2
− 1

8

)

=
5

4
,

e4 =
1

4
(p1e3 − p2e2 + p3e1 − p4e0) =

1

4

(

−1

2
· 5
4
+

21

4
· 5
2
+

1

8
· 1
2
− 65

16

)

=
17

8
.

Further computation yields

e5 = −17

16
, e6 = −43

64
, e7 =

43

128
, e8 =

3

64
, e9 = − 3

128
, e10 =

1

1024
.

Therefore

Ψn(x) = 210
(

x10 +
1

2
x9 − 5

2
x8 − 5

4
x7 +

17

8
x6 +

17

16
x5

−43

64
x4 − 43

128
x3 +

3

64
x2 +

3

128
x+

1

1024

)

,

and Ψ66(x) = 1024x10 + 512x9 − 2560x8−1280x7 + 2176x6 + 1088x5

− 688x4 − 344x3 + 48x2 + 24x+ 1.

Next, we will show the relation between Ψq(x) and Ψ2q(x) when q is odd.
First, we note that φ(q) = φ(2q) for q ≥ 3 in that case. Therefore both
polynomials have the same degree.

Theorem 3.4. Let q be an odd integer. If Ψq(x) = 2d
∑d

i=0(−1)ieix
d−i and

Ψ2q(x) = 2d
∑d

i=0(−1)ie′ix
d−i, then ei = e′i for i− even and ei = −e′i for i−

odd.

Proof. The claim is trivially true when q = 1 because Ψ1(x) = 2x − 2 and
Ψ2(x) = 2x+ 2. Assume now q ≥ 3. First of all e0 = e′0 = 1. If µ(q) = 0, then
µ(2q) = 0, otherwise µ(q) = −µ(2q) because 2q has one more prime among its
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factors that q doesn’t have. In either case we have e1 = −e′1. Next, we will
compute pi and p′i for 2 ≤ i ≤ d. Suppose i is odd. According to (2.17) we need
to compute cq(j) and c2q(j) for j = i, i− 2, i− 4, . . . , 1. Note that

2q

gcd(2q, j)
= 2

q

gcd(q, j)

because both q and j are odd. Therefore we have

cq(j) = µ(uj)
φ(q)

φ(uj)
, where uj =

q

gcd(q, j)
and

c2q(j) = µ(vj)
φ(2q)

φ(vj)
= µ(2uj)

φ(2q)

φ(2uj)
, because vj =

2q

gcd(2q, j)
= 2uj.

Using φ(q) = φ(2q), φ(uj) = φ(2uj), because both q and uj are odd numbers
greater than or equal to 3, and µ(2uj) = −µ(uj), for the same reason used for
µ(q) = −µ(2q) earlier, we conclude that cq(j) = −c2q(j). Therefore pi = −p′i
when i is odd using (2.17). Suppose now i is even. We need to compute cq(j)
and c2q(j) for j = i, i− 2, i− 4, . . . , 2. This time we have

2q

gcd(2q, j)
=

2q

2gcd(q, j)
=

q

gcd(q, j)

because q is odd and j is even. Therefore

cq(j) = µ(uj)
φ(q)

φ(uj)
, where uj =

q

gcd(q, j)
and

c2q(j) = µ(vj)
φ(2q)

φ(vj)
= µ(uj)

φ(2q)

φ(uj)
, because vj =

2q

gcd(2q, j)
= uj.

Therefore pi = p′i when i is even, using (2.17), because φ(q) = φ(2q). Now we
will prove the theorem using induction on i in ei. The initial step is true as
mentioned above: e0 = e′0 and e1 = −e′1. Suppose ej = −e′j for j− odd with
3 ≤ j < i and ej = e′j for j− even with 2 ≤ j < i. Suppose i is odd. Then in

each term of the recursive expansion of ei given in (3.2) exactly one of the two
multiplicands is negative of the respective element with prime. Namely,

ei =
1

i

i
∑

j=1

(−1)j−1pjei−j =
1

i
(p1ei−1 − p2ei−2 + · · · − pi−1e1 + pie0)

=
1

i

(

(−p′1)e
′

i−1 − p′2(−e′i−2) + · · · − p′i−1(−e′1) + (−p′i)e
′

0

)

= −e′i

using induction assumption and p1 = e1, p
′

1 = e′1. Using the same reasoning we
get

ei =
1

i

i
∑

j=1

(−1)j−1pjei−j =
1

i
(p1ei−1 − p2ei−2 + · · · − pi−1e1 + pie0)

=
1

i

(

(−p′1)(−e′i−1)− p′2(e
′

i−2) + · · · − (−p′i−1)(−e′1) + p′ie
′

0

)

= e′i



THE MINIMAL POLYNOMIAL OF cos(2π/n) 681

for i− even by realizing that each term of the recursive expansion of ei this
time has two multiplicands of the same sign when we replace them by those
that have prime. This finishes the proof. �

Example 3.5.

Ψ27(x) = 512 x9 − 1152 x7 + 864 x5 − 240 x3 + 18 x+ 1,

Ψ54(x) = 512 x9 − 1152 x7 + 864 x5 − 240 x3 + 18 x− 1.

Example 3.6.

Ψ21(x) = 64 x6 − 32 x5 − 96 x4 + 48 x3 + 32 x2 − 16 x+ 1,

Ψ42(x) = 64 x6 + 32 x5 − 96 x4 − 48 x3 + 32 x2 + 16 x+ 1.

Corollary 3.7. Let q be an odd integer. Then

Ψ2q(x) = (−1)dΨq(−x),

where d is the degree of Ψq(x).

Proof. The claim is true for q = 1 because (−1)1Ψ1(−x) = −(2(−x) − 2),
which is equal to Ψ2(x) = 2x+ 2. If q ≥ 3, then φ(q) = φ(2q) as noted before
Theorem 3.4 because q is odd. Therefore the leading term of both Ψq(x) and
Ψ2q(x) is 2dxd. First, let’s suppose that d is even. Then by Theorem 3.4
the coefficients of all even degree terms of Ψ2q(x) agree with those of Ψq(x).
Also, the coefficients of all odd degree terms of Ψ2q(x) are opposites of those of
Ψq(x). Another way of saying this is Ψ2q(x) = Ψq(−x). Suppose now d is odd.
Since the leading coefficients are the same the coefficients of all odd degree
terms of Ψ2q(x) agree with those of Ψq(x). Likewise the coefficients of all even
degree terms of Ψ2q(x) are opposites of those of Ψq(x). We can write this fact
as Ψ2q(x) = −Ψq(−x). �

Theorem 3.8. Let n > 4. If n is divisible by 4, then Ψn(x) is a polynomial

consisting of even powers of x only.

Proof. Let n = 4m. First, we will show that p2k+1 vanish for k ≥ 0. Clearly
p1 = µ(n)/2 = 0 by (2.12) and p2k+1 = 0 for k > 0 will follow once we show
that cn(j) = 0 for odd values of j > 1 because of (2.17) and the fact that
cn(1) = µ(n) = 0 by (2.11). According to (3.7)

cn(j) = µ(uj)
φ(n)

φ(uj)
, where uj =

4m

gcd(4m, j)
.

If gcd(4m, j) = 1, then uj = 4m and µ(uj) = 0, which yields cn(j) = 0.
Suppose gcd(4m, j) 6= 1. Since j is odd gcd(4m, j) can not be even and because
of that gcd(4m, j) ∤ 4, which means uj is divisible by 4. Therefore µ(uj) = 0.
Thus cn(j) = 0 for odd values of j and our claim that p2k+1 = 0 follows.
Now we will prove the theorem by showing that e2k+1 = 0 for k ≥ 0 because

Ψn(x) = 2d
∑d

i=0(−1)ieix
d−i and d = φ(n)/2 is even. In order to see that

d is even it suffices to show that 4 |φ(n) which follows from the fact that
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φ(4m) = 2φ(2m) and evenness of φ(2m) because of the assumption 2m ≥ 4.
We will use induction to achieve that. The first step is e1 = 0, which follows
from e1 = p1 by definition. Suppose that ej = 0 for j = 3, 5, . . . , 2k − 1. Then
according to (3.2)

e2k+1 =
1

2k + 1

2k+1
∑

j=1

(−1)j−1pje2k+1−j

=
1

2k + 1
(p1e2k − p2e2k−1 + p3e2k−2 − · · · − p2ke1 + p2k+1e0) .

The terms with plus sign in the expansion above all vanish because we showed
earlier that pj = 0 for j = 1, 3, 5, . . . , 2k+1 and the terms with minus sign also
vanish because of our induction assumption and e1 = 0. �

Example 3.9.

Ψ60(x) = 256 x8 − 448 x6 + 224 x4 − 32 x2 + 1,

Ψ72(x) = 4096 x12 − 12288 x10 + 13824 x8 − 7168 x6 + 1680 x4 − 144 x2 + 1.
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