Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.1.129

Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law  

Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Structural Engineering and Mechanics / v.76, no.1, 2020 , pp. 129-139 More about this Journal
Abstract
In this piece of work, carbon nanotubes motion equations are framed by Kelvin's method. Employment of the Kelvin's method procedure gives birth to the tube frequency equation. It is also exhibited that the effect of frequencies is investigated by varying the different index of polynomial function. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported and these frequency curves are higher than that of clamped-free curves. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes.
Keywords
material structure; Kelvin's approach; CNT; fraction law;
Citations & Related Records
Times Cited By KSCI : 58  (Citation Analysis)
연도 인용수 순위
1 Shen, (2009), H.S. "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026   DOI
2 Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.12989/scs.2011.11.1.059   DOI
3 Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123.   DOI
4 Swain, A., Roy, T., and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. And Appl. Res. in Mech. Eng., 2, 129-133.
5 Torabi, J., and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. https://doi.org/10.12989/sem.2018.68.3.313   DOI
6 Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proceedings of Royal Society A, 465. https://doi.org/10.1098/rspa.2008.0394
7 Wang, J., and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.   DOI
8 Wang, Q., and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/16/1/022.   DOI
9 Xu, K.U., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013-1. 10.1115/1.2793133.   DOI
10 Yang, J., Ke, L. L.,and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.   DOI
11 Yazid M, Heireche H., Tounsi A., Bousahla A.A., and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.   DOI
12 Yoon, J., Ru, C.Q., and Mioduchowski, A. (2002), "Noncoaxial resonance of an isolated multiwall carbon nanotube", Physical Review B., 66(23), 2334021-2334024. https://doi.org/10.1103/PhysRevB.66.233402.
13 Zamanian M, Kolahchi, R, and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043   DOI
14 Zamanian, M., Kolahchi, R., and Bidgoli, M. R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57.   DOI
15 Zhang, J. F., Liu, Q. S., Ge, Y. J., and Zhao, L. (2019), "Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells", Struct. Eng. Mech., 72(5), 541. https://doi.org/10.12989/sem.2019.72.5.541   DOI
16 Zou, R.D., and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Walled Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.   DOI
17 Gao, Y., and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E, 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.   DOI
18 Batou, B., Nebab, M., Bennai, R., Atmane, H. A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699   DOI
19 Arani, A. J., and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578.   DOI
20 Arani, Jafarian A., and Kolahchi R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput Concr., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.   DOI
21 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699   DOI
22 Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213   DOI
23 Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67(1),1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.   DOI
24 Georgantzinos, S. K., Giannopoulos, G. I. and Anifantis, N. K. (2009), "An efficient numerical model for vibration analysis of single-walled carbon nanotubes", Comput/ Mech., 43(6), 731- 741. https://doi.org/10.1007/s00466-008-0341-8   DOI
25 Ghadiri, M., Ebrahimi, F., Salari, E., Hosseini, S. A. H., and Shaghaghi, G. R. (2015), "Electro-thermo-mechanical vibration analysis of embedded single-walled boron nitride nanotubes based on nonlocal third-order beam theory", J. Multiscale Comput. Eng., 13(5),
26 Ghavanloo, E., Daneshmand, F., and Rafiei, M. (2010), "Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscous elastic Winkler foundation", Physica E, 42, 2218-2224. https://doi.org/10.1016/j.physe.2010.04.024.   DOI
27 Goncalves, P.B., DA silva, F.M.A. and Prado, Z.J.G.N. (2006), "Transient stability of empty and fluid-filled cylindrical shells", J. Braz. Soc. Mech. Sci. Eng, 28(3), 331-333. http://dx.doi.org/10.1590/S1678-58782006000300011.
28 Gupta, S.S., Bosco, F.G., and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.   DOI
29 Hayati, H., Hosseini, S. A., and Rahmani, O. (2017), "Coupled twist-bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory", Microsyst. Technol., 23(7), 2393-2401.   DOI
30 He, X.Q., Kitipornchai, S., and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction", J. Mech. Phys. Solids, 53, 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.   DOI
31 Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fib., 1-15. https://doi.org/10.1080/15440478.2018.1503129
32 Benguediab, S., Tounsi, A., Ziadour, and Semmah, A. (2014), "Chirality and scale effects on mechanical and buckling properties of zigzag double-walled carbon nanotubes", Composites Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.   DOI
33 Bilouei, B. S., Kolahchi, R., and Bidgoli, M. R. (2016), "Buckling of concrete columns retrofitted with "Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063.   DOI
34 Bilouei, Safari B, Kolahchi, R., and Bidgoli, M. R. (2016), " Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053- 1063. https://doi.org/10.12989/cac.2016.18.5.1053.   DOI
35 Hussain M., Naeem M. N. (2020a), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandwich Struct. Mater. https://doi.org/10.1177/1099636220906257
36 Heydarpour, Y., Aghdam, M.M., and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.   DOI
37 Hsu, J. C., Chang, R. P., and Chang, W. J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Physics Letters A, 372(16), 2757- 2759. https://doi.org/10.1016/j.physleta.2008.01.007   DOI
38 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q., and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56, 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.   DOI
39 Hussain, M., and Naeem, M., (2018), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomaterials - Synthesis and Applications, Intechopen, United Kingdom.
40 Hussain, M., and Naeem, M., (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality" IntechOpen. United Kingdom.
41 Hussain, M., and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B, 163, 548-561.   DOI
42 Hussain, M., Naeem., M.N. 2017, "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164.   DOI
43 Karami, H., and Farid, M. (2015), "A new formulation to study in-plane vibration of curved carbon nanotubes conveying viscous fluid", J. Vib. Control, 21(12), 2360-2371.   DOI
44 Hussain, M., Naeem., M.N., Shahzad, A., and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Advances, 7(4). https://doi.org/10.1063/1.4979112.
45 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(7), 56-58. https://doi.org/10.1038/354056a0   DOI
46 Kar, V. R., Panda, S. K., and Pandey, H. K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527   DOI
47 Kiani, K. (2010), "Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects", Physica E, 42(9), 2391-2401.   DOI
48 Kocal, T., and Akbarov, S. D. (2019), "The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder", Struct. Eng. Mech., 71(5), 577-601. https://doi.org/10.12989/sem.2019.71.5.577   DOI
49 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248.   DOI
50 Kolahchi, R., and Bidgoli, A. M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274.   DOI
51 Kolahchi, R., and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dynam., 90(1), 479-492.   DOI
52 Kolahchi, R., Safari, M., and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265.   DOI
53 Kolahchi, R., Hosseini, H., and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186.   DOI
54 Kolahchi, R., Hosseini, H., Fakhar, M. H., Taherifar, R., and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034.   DOI
55 Kolahchi, R., Keshtegar, B., and Fakhar, M. H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandwich Struct. Mater., 22(1), 3-27.   DOI
56 Kolahchi, R., Zarei, M. S., Hajmohammad, M. H., and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates intebgrated with sensor and actuator based on refined zigzag theory", J. Mech. Sci., 130, 534-545.   DOI
57 Kolahchi, R., Zarei, M. S., Hajmohammad, M. H., and Oskouei, A. N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Walled Struct., 113, 162-169.   DOI
58 Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", J. Solid. Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.   DOI
59 Chemi, A., Zidour, M., Heireche, H., Rakrak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53(6), 827-836. https://doi.org/10.1007/s11029-018-9708-x   DOI
60 Brischotto, S. (2015), "A continuum shell model including van der Waals interaction for free vibrations of double-walled carbon nanotubes", CMES, 104, 305-327.
61 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media, Germany.
62 Fenjan, R. M., Ahmed, R. A., and \Faleh, N. M. (2019a), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314.- https://doi.org/10.12989/aas.2019.6.4.297.   DOI
63 Lee, H. L., and Chang, W. J. (2009), "Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium", Physica E, 41(4), 529-532.   DOI
64 Faleh, N. M., Fenjan, R. M., and Ahmed, R. A. (2020), "Forced Vibrations of Multi-phase Crystalline Porous Shells Based on Strain Gradient Elasticity and Pulse Load Effects", J. Vib. Eng. Technol., 1-9.- 10.1007/s42417-020-00203-8.
65 Fatahi-Vajari. A., Azimzadeh, Z., Hussain. M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., https://doi.org/10.1049/mnl.2019.0203.
66 Fenjan, R. M., Ahmed, R. A., Alasadi, A. A., and Faleh, N. M. (2019c), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled. Syst. Mech., 8(3), 247-257.
67 Fenjan, R. M., Ahmed, R. A., Alasadi, A. A., and Faleh, N. M. (2019b), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities. Coupled. Syst. Mech., 8(3), 247-257.- https://doi.org/10.12989/csm.2019.8.3.247.
68 Flugge, S., (1973), Stresses in Shells, Springer 2nd Edition, Germany.
69 Madani, H., Hosseini, H., and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913.   DOI
70 Loy, C.T., Lam, K.Y., and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int J Mech Sci, 1, 309- 324. https://doi.org/10.1016/S0020-7403(98)00054-X.
71 Mohsen, M., and Eyvazian A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs." Steel Compos. Struct. 34, no. 2 (2020): 289.   DOI
72 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
73 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057   DOI
74 Mohammadimehr, M., and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., 19(3), 309-322.   DOI
75 Motezaker M and Eyvazian A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486 https://doi.org/10.12989/sem.2020.73.5.481   DOI
76 Motezaker, M., and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer" Computers and Concrete, 20(3), 361-368.   DOI
77 Loy, C.T., Lam, K.L., Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198.   DOI
78 Motezaker, M., Jamali, M., and Kolahchi, R. (2020), Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. Journal of Computational and Applied Mathematics, 369, 112625.   DOI
79 Narwariya, M., Choudhury, A. and Sharma, A.K (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132   DOI
80 Narendar, S. (2011), "Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia", Physica E, 43, 1015-1020. https://doi.org/10.1016/j.physe.2010.12.004   DOI
81 Natsuki T, Qing. QN., and Morinobu, E. (2007), "Wave propagation in single-walled and double-walled carbon nanotubes filled with fluids", J. Appl Phys., 101(3), 034319-034319-5. https://doi.org/10.1063/1.2432025.   DOI
82 O'connell, M. J. (2006), Carbon nanotubes: properties and applications. CRC press.
83 Paliwal, D.N., Kanagasabapathy, H., and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.   DOI
84 Peddieson, J., Buchanan, G.R., and McNitt, R.P. (2003), "Application of Nonlocal Continuum Models to Nanotechnology", Int. J. Eng. Sei., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.   DOI
85 Motezaker, M., and Kolahchi, R. (2017b), "Seismic response of SiO 2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Computers and Concrete, 19(6), 745-753.   DOI
86 Rouhi, H., Ansari, R., Arash, B. (2012), "Vibration Analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Int J. Mech. Sei., 37, 91-105.
87 Ru, C. (2004), "Elastic models for carbon nanotubes", Encyclopedia of Nanoscience and Nanotechnology, 2(744), American Scientific Publishers, USA. 731-744.
88 Ansari, R., and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80(2), 021006. https://doi.org/10.1142/S179329201250018X.   DOI
89 Ahmed, R. A., Fenjan, R. M., and Faleh, N. M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180.-https://doi.org/10.12989/gae.2019.17.2.175.   DOI
90 Ansari, R., and Ajori, S. (2014), "Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes", Physics Lett. A, 378(38-39), 2876-2880.   DOI
91 Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., and Ordejon, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Physical Review B, 59(19), 12678.   DOI
92 Sadoughifar, A., Farhatnia, F., Izadinia, M., and Talaeetaba, S. B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225. https://doi.org/10.12989/sem.2020.73.3.225   DOI
93 Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Advances, 9(4), https://doi.org/10.1016/0263-8223(94)00068-9.
94 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
95 Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365   DOI
96 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.   DOI
97 Shamshirsaz, M., Sharafi, S., Rahmatian, J., Rahmatian, S., and Sepehry, N. (2020), "A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation", Struct. Eng. Mech., 73(4), 407. https://doi.org/10.12989/sem.2020.73.4.407   DOI
98 Sharma, P., Singh, R., Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406219888234.