Browse > Article
http://dx.doi.org/10.5666/KMJ.2017.57.1.145

Polynomials and Homotopy of Virtual Knot Diagrams  

Jeong, Myeong-Ju (Department of Mathematics and Computer Science, Korea Science Academy of KAIST)
Park, Chan-Young (Department of Mathematics, College of Natural Sciences Kyungpook National University)
Park, Maeng Sang (Department of Mathematics Pusan National University)
Publication Information
Kyungpook Mathematical Journal / v.57, no.1, 2017 , pp. 145-161 More about this Journal
Abstract
If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic. There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot diagrams.
Keywords
affine index polynomial; virtual homotopy; crossing change; Gordian distance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc., 96(1984), 469-471.   DOI
2 Z. Cheng, A polynomial invariant of virtual knots, Proc. Amer. Math. Soc., 142(2)(2014), 713-725.   DOI
3 Z. Cheng and H. Gao, A polynomial invariant of virtual links, J. Knot Theory Ramifications, 22(12)(2013), 1341002, 33 pp.   DOI
4 H. A. Dye and L. H. Kauffman, Virtual crossing number and the arrow polynomial, J. Knot Theory Ramifications, 18(10)(2009), 1335-1357.   DOI
5 H. A. Dye and L. H. Kauffman, Virtual homotopy, J. Knot Theory Ramifications, 19(7)(2010), 935-960.   DOI
6 M.-J. Jeong, Delta moves and Kauffman polynomials of virtual knots, J. Knot Theory Ramifications, 23(10)(2014), 1450053, 17 pp.   DOI
7 M. Goussarov, M. Polyak and O. Viro, Finite type invariants of classical and virtual knots, Topology, 39(2000), 1045-1068.   DOI
8 C. Hayashi, A lower bound for the number of Reidemeister moves for unknotting, J. Knot Theory Ramifications, 15(3)(2006), 313-325.   DOI
9 M.-J. Jeong, A lower bound for the number of forbidden moves to unknot a long virtual knot, J. Knot Theory Ramifications, 22(6)(2013), 1350024, 13 pp.   DOI
10 M.-J. Jeong, Reidemeister moves and a polynomial of virtual knot diagrams, J. Knot Theory Ramifications, 24(2)(2015), 1550010, 16 pp.   DOI
11 M.-J. Jeong and C.-Y. Park, Similarity indices and the Miyazawa polynomials of virtual links, J. Knot Theory Ramifications, 23(7)(2014), 1460003, 17 pp.   DOI
12 A. Kawauchi, On the Alexander polynomials of knots with Gordian distance one, Topology Appl., 159(2012), 948-958.   DOI
13 L. H. Kauffman, Virtual knot theory, Europ. J. Combin., 20(1999), 663-690.   DOI
14 L. H. Kauffman, An affine index polynomial invariant of virtual knots, J. Knot Theory Ramifications, 22(4)(2013), 1340007, 30 pp.   DOI
15 T. Kanenobu, Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications, 10(1)(2001), 89-96.   DOI
16 Y. Miyazawa, Magnetic graphs and an invariant for virtual links, J. Knot Theory Ramifications, 15(10)(2006), 1319-1334.   DOI
17 Y. Miyazawa, A multi-variable polynomial invariant for virtual knots and links, J. Knot Theory Ramifications, 17(11)(2008), 1311-1326.   DOI
18 Y. Miyazawa, Gordian distance and polynomial invariants, J. Knot Theory Ramifications, 20(6)(2011), 895-907.   DOI
19 S. Nelson, Unknotting virtual knots with Gauss diagram forbidden moves, J. Knot Theory Ramifications, 10(6)(2001), 931-935.   DOI
20 Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings, Math. Sem. Notes Kobe Univ., 11(1983), 257-258.
21 M. Polyak, Minimal generating sets of Reidemeister moves, Quantum Topol., 1(4)(2010), 399-411.