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Abstract. We show that for 1 < p < ∞, k,m ∈ N, n(k)(lp) = inf{n(k)(lmp ) : m ∈ N}
and that for any positive measure µ, n(k)(Lp(µ)) ≥ n(k)(lp). We also prove that for every

Q ∈ P(klp : lp) (1 < p < ∞), if v(Q) = 0, then ∥Q∥ = 0.

1. Introduction

Given a complex or real Banach space E we write BE for the closed unit ball
and SE for the unit sphere of E. The dual space of E is denoted by E∗. For
k ∈ N, a mapping P : E → E is called a (continuous) k-homogeneous polyno-
mial if there is a k-multilinear (continuous) mapping A : E × · · · × E → E such
that P (x) = A(x, . . . , x) for every x ∈ E. P(kE : E) denotes the Banach space
of all k-homogeneous continuous polynomials from E into itself with the norm
∥P∥ = supx∈BE

∥P (x)∥. We refer to [6] for background of polynomials on a Banach
space. Let

Π(E) := {(x, x∗) : x ∈ SE , x
∗ ∈ SE∗ , x∗(x) = 1}.

The numerical radius of P is defined [3] by

v(P ) := sup{|x∗(Px)| : (x, x∗) ∈ Π(E)}.

The polynomial numerical index of order k of E is defined [4] by

n(k)(E) := inf{v(P ) : P ∈ P(kE : E), ∥P∥ = 1}
= sup{M ≥ 0 : ∥P∥ ≤ M v(P ) for all P ∈ P(kE : E)}.

Of course, n(1)(E) is the classical numerical index of E. Note that 0 ≤ n(k)(E) ≤ 1,
and n(k)(E) > 0 if and only if v(·) is a norm on P(kE : E) equivalent to the usual
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norm. It is obvious that if E1, E2 are isometrically isomorphic Banach spaces, then
n(k)(E1) = n(k)(E2).

The concept of the classical numerical index (in our terminology, the polyno-
mial numerical index of order 1) was first suggested by G. Lumer [12]. In [4] the
authors proved n(k)(C(K)) = 1 when C(K) is the complex spaces and some in-

equality n(k)(E) ≤ n(k−1)(E) ≤ k
(k+ 1

k−1
)

(k−1)k−1 n(k)(E) for every Banach space E. It was

shown that n(k)(E∗∗) ≤ n(k)(E). The authors [10] found a lower bound for the
polynomial numerical index of real lush spaces. They used this bound to compute
the polynomial numerical index of order 2 of the real spaces c0, ℓ1 and ℓ∞. In
fact, they showed that for the real spaces X = c0, l1, l∞, n(2)(X) = 1/2. They also
presented an example of a real Banach space X whose polynomial numerical in-
dices are positive while the ones of its bidual are zero. We refer to ([1–5, 7–12]) for
some results about the polynomial numerical index. For general information and
background on numerical ranges, we refer to [1–2].

In this paper, we show that for 1 < p < ∞, k,m ∈ N, n(k)(lp) = inf{n(k)(lmp ) :

m ∈ N} and that for any positive measure µ, n(k)(Lp(µ)) ≥ n(k)(lp). We also prove
that for every Q ∈ P(klp : lp) (1 < p < ∞), if v(Q) = 0, then ∥Q∥ = 0.

2. Results

For 1 < p < ∞ and m ∈ N, lmp denotes Km endowed with the usual p-norm,
where K = R or C.We may consider lmp as a subspace of lp. Let {en}N be the canoni-
cal basis of lp and {e∗n}n∈N the biorthogonal functionals associated to {en}n∈N. Note
that in general if X is a Banach space and Y is a subspace of X there is no com-
parison between n(k)(X) and n(k)(Y ) for k ∈ N.

Theorem 2.1. Let 1 < p < ∞ and k ∈ N be fixed. Then n(k)(lp) = inf{n(k)(lmp ) :

m ∈ N} and the sequence {n(k)(lmp )}m∈N is decreasing.

Proof. We proceed by steps. Let m ∈ N. We define P{1,··· ,m} : lp → lmp by
P{1,··· ,m}(

∑∞
j=1 λjej) =

∑m
j=1 λjej .

Step 1: The sequence {n(k)(lmp )}m∈N is decreasing.

Proof of Step 1. Let Q ∈ SP(klmp :lmp ). We define Q̃ ∈ P(klm+1
p : lm+1

p ) by

Q̃(x) = (Q ◦ P{1,··· ,m}(x), 0) for x ∈ lm+1
p . It is obvious that Q̃ ∈ SP(

klm+1
p : lm+1

p ).

Claim A: v(Q) = v(Q̃)

Let (x, x∗) ∈ Π(lmp ). Then ( (x, 0), (x∗, 0) ) ∈ Π(lm+1
p ) and

(∗) |x∗(Q(x))| = |(x∗, 0)(Q̃( (x, 0) ))| ≤ v(Q̃).

By taking supremum in the left side of (∗) over (x, x∗) ∈ Π(lmp ), we have v(Q) ≤
v(Q̃). For the reverse inequality let ϵ > 0. Then there exists z0 :=

∑m+1
j=1 ajej ∈
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Slm+1
p

such that (z0,
∑m+1

j=1 sign(aj)|aj |p−1e∗j ) ∈ Π(lm+1
p ) and

v(Q̃)− ϵ < |
m+1∑
j=1

sign(aj)|aj |p−1e∗j (Q̃(z0))|

= |
m∑
j=1

sign(aj)|aj |p−1e∗j (Q(

m∑
j=1

ajej))|

= Ck+p−1|
m∑
j=1

sign(aj)|
aj
C
|
p−1

e∗j (Q(
m∑
j=1

aj
C
ej))|

(where C := (

m∑
j=1

|aj |p)
1
p ≤ 1)

≤ |
m∑
j=1

sign(aj)|
aj
C
|
p−1

e∗j (Q(
m∑
j=1

aj
C
ej))|

≤ v(Q), because (
m∑
j=1

aj
C
ej ,

m∑
j=1

sign(aj)|
aj
C
|
p−1

e∗j ) ∈ Π(lmp ),

which show v(Q̃) ≤ v(Q). Thus v(Q) = v(Q̃).
It follows that

n(k)(lmp ) = inf
Q∈S

P(klmp :lmp )

v(Q)

= inf
Q∈S

P(klmp :lmp )

v(Q̃)

≥ inf
R∈S

P(kl
m+1
p :l

m+1
p )

v(R)

= n(k)(lm+1
p ).

Step 2: n(k)(lp) ≤ n(k)(lmp ) for every m ∈ N

Proof of Step 2. Let Q ∈ SP(klmp :lmp ). We define Q̃ ∈ P(klp : lp) by Q̃(z) =

(Q ◦ P{1,··· ,m}(z), 0, 0, · · · ) for z ∈ lp. It is obvious that Q̃ ∈ SP(klp:lp). By the same

argument as in Step 1, we have v(Q̃) ≤ v(Q). Thus it follows.

Step 3: limm→∞ n(k)(lmp ) = n(k)(lp)

Proof of Step 3. Let Q ∈ SP(klp:lp). For each m ∈ N, we define Qm ∈ P(klmp :
lmp ) by Qm(x) = P{1,··· ,m} ◦ Q(x, 0, 0, · · · ) for x ∈ lmp . It is obvious that ∥Qm∥ ≤
1, ∥Qm∥ ≤ ∥Qm+1∥ and v(Qm) ≤ v(Q). For each m ∈ N, we define Q̃m ∈ P(klp : lp)

by Q̃m(z) = (Qm ◦ P{1,··· ,m}(z), 0, 0, · · · ) for z ∈ lp. By the argument in Step 1,

v(Q̃m) = v(Qm).
Claim B: limm→∞ ∥Qm∥ = 1



120 Sung Guen Kim

Let ϵ > 0. Choose x0 ∈ Slp such that ∥Q(x0)∥ > 1 − ϵ. By continuity of Q at
x0 it follows that

∥Qm ◦ P{1,··· ,m}(x0)−Q(x0)∥
=∥P{1,··· ,m} ◦Q ◦ P{1,··· ,m}(x0)− P{1,··· ,m} ◦Q(x0)∥+∥P{1,··· ,m} ◦Q(x0)−Q(x0)∥
≤∥Q ◦ P{1,··· ,m}(x0)−Q(x0)∥+ ∥P{1,··· ,m} ◦Q(x0)−Q(x0)∥ → 0 as m → ∞.

Choose N0 ∈ N such that ∥Qm ◦ P{1,··· ,m}(x0)−Q(x0)∥ < ϵ for all m ≥ N0. Then
for all m ≥ N0, 1 ≥ ∥Qm∥ ≥ ∥Qm ◦ P{1,··· ,m}(x0)∥ > 1− 2ϵ, which shows Claim B.

Claim C: limm→∞ v(Qm) = v(Q)
There exists (y0, y

∗) ∈ Π(lp) such that |y∗(Q(y0))| > v(Q) − ϵ. Let y0 :=∑∞
j=1 bjej . Then y∗ =

∑∞
j=1 sign(bj) |bj |p−1e∗j . For m ∈ N, we define

y
(m)
0 :=

∑m−1
j=1 bjej + (

∑∞
j=m |bj |p)

1
p em and y∗m :=

∑m−1
j=1 sign(bj) |bj |p−1e∗j +

(
∑∞

j=m |bj |p)
p−1
p e∗m. It is obvious that (y

(m)
0 , y∗m) ∈ Π(lp) and limm→∞ ∥y0 − y

(m)
0 ∥ =

0 = limm→∞ ∥y∗ − y∗m∥. Note that limm→∞ y∗m(Q(y
(m)
0 )) = y∗(Q(y0)). Indeed,

|y∗m(Q(y
(m)
0 ))− y∗(Q(y0))|

≤ |y∗m(Q(y
(m)
0 ))− y∗(Q(y

(m)
0 ))|+ |y∗(Q(y

(m)
0 ))− y∗(Q(y0))|

≤ ∥y∗m − y∗∥ ∥Q(y
(m)
0 )∥+ ∥Q(y

(m)
0 )−Q(y0)∥

≤ ∥y∗m − y∗∥+ ∥Q(y
(m)
0 )−Q(y0)∥ → 0 as m → ∞.

Choose N1 ∈ N such that |y∗m(Q(y
(m)
0 ))| > v(Q) − ϵ for all m ≥ N1. It is easy to

show that for all m ≥ N1, y
∗
N1

(Q̃m(y
(N1)
0 )) = y∗N1

(Q(y
(N1)
0 )). It follows that for all

m ≥ N1,

v(Q)− ϵ < |y∗N1
(Q(y

(N1)
0 ))|

= |y∗N1
(Q̃m(y

(N1)
0 ))|

≤ v(Q̃m) = v(Qm)

≤ v(Q),

which show limm→∞ v(Qm) = v(Q). Thus we have

(∗∗) v(Q) = lim
m→∞

v(Qm)

= lim sup
m→∞

[v(
Qm

∥Qm∥
) ∥Qm∥]

= lim sup
m→∞

v(
Qm

∥Qm∥
) lim

m→∞
∥Qm∥

= lim sup
m→∞

v(
Qm

∥Qm∥
) (by claim B)

≥ lim sup
m→∞

n(k)(lmp )
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Taking the infimum in the left side of (∗∗) over Q ∈ SP(klp:lp), we have n(k)(lp) ≥
lim supm→∞ n(k)(lmp ). By Step 2, we have n(k)(lp) ≤ lim infm→∞ n(k)(lmp ). Thus

limm→∞ n(k)(lmp ) = n(k)(lp). Therefore, we complete the proof. �

Theorem 2.2. Let 1 < p < ∞. Let Q ∈ P(klp : lp). Then v(Q) = 0 if and only if
∥Q∥ = 0.

Proof. It is enough to show that if v(Q) = 0, then Q = 0. We will show that
Qm := P{1,··· ,m} ◦ Q|span {e1,··· ,em} : lmp → lmp is the zero polynomial for every
m ∈ N. Write

Qm(
m∑

k=1

xkek) =
∑

k1+···+km=m,0≤k1,··· ,km≤m

m!

k1! · · · km!
xk1
1 xk2

2 · · ·xkm
m Am(ek1 , · · · , ekm),

where Am is the corresponding symmetric k-linear mapping to the k-homogeneous
polynomial Qm. Let ak1···km := Am(ek1 , · · · , ekm) ∈ lmp .

Let p1 := 0 and pn be the n-th prime (n ≥ 2). Let 0 ≤ t ≤ 1 be fixed and q ∈ R
with 1/p+ 1/q = 1. Put

y :=
t
√
p1e1 + t

√
p2e2 + · · ·+ t

√
pmem

(1 + tp
√
p2 + · · ·+ tp

√
pm)1/p

and

y∗ :=
t(p−1)

√
p1e∗1 + t(p−1)

√
p2e∗2 + · · ·+ t(p−1)

√
pme∗m

(1 + tp
√
p2 + · · ·+ tp

√
pm)1/q

.

Then (y, y∗) ∈ Π(lmp ).
Claim: ak1···km = 0 for every k1, · · · , km
It follows that for every 0 ≤ t ≤ 1,

0 = y∗(Qm(y))

=
1

(1 + tp
√
p2 + · · ·+ tp

√
pm)1/q+k/p

×

(t(p−1)
√
p1e∗1 + t(p−1)

√
p2e∗2 + · · ·+ t(p−1)

√
pme∗m)

(Qm(t
√
p1e1 + t

√
p2e2 + · · ·+ t

√
pmem)),

so

0 = (t(p−1)
√
p1e∗1 + t(p−1)

√
p2e∗2 + · · ·+ t(p−1)

√
pme∗m)

(Qm(t
√
p1e1 + t

√
p2e2 + · · ·+ t

√
pmem))

=
∑

k1+···+km=m,0≤k1,··· ,km≤m

t
√
pk2

+···+√
pkm

m!

k1! · · · km!
e∗1(ak1···km)

+
∑

2≤j≤m

[
∑

k1+···+km=m,0≤k1,··· ,km≤m

t
√
pk2

+···+√
pkm+(p−1)

√
pkj

m!

k1! · · · km!
e∗j (ak1···km)].
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Note that the elements of the set

{ √
pk2 + · · ·+√

pkm ,
√
pk2 + · · ·+√

pkm + (p− 1)
√
pkj :

k1 + · · ·+ km = m, 0 ≤ k1, · · · , km ≤ m, 2 ≤ j ≤ m}

are different. Thus e∗j (ak1···km) = 0 for every 1 ≤ j ≤ m, which show ak1···km = 0

for every k1, · · · , km. Therefore, Qm = 0. Let x =
∑∞

k=1 xkek ∈ lp be fixed. By
continuity of Q at x, we have

Q(x) = lim
m→∞

Qm(x) = 0. �

Corollary 2.3. Let 1 < p < ∞. Then for every k,m ∈ N, we have n(k)(lmp ) > 0.

Proof. Assume that n(k)(lmp ) = 0 for some k,m ∈ N. Since the unit sphere of the

finite dimensional space P(klmp : lmp ) is compact, there exists some Q ∈ P(klmp : lmp )
such that ∥Q∥ = 1 and v(Q) = 0. Theorem 2.2 shows that Q = 0, which is
impossible. �

Let (Ω,Σ) be a measurable space and µ a positive measure on Ω. We denote by
P the collection of all partitions π of Ω into finitely many pairwise disjoint members
of Σ with finite strictly positive measures. We order this collection by π1 ≤ π2

whenever each member of π1 is the union of members of π2. So P is a directed set.
For each π = {E1, · · · , Em} ∈ P, we associate the subspace Vπ of Lp(µ) defined
by Vπ = {

∑m
i=1 ai1Ei : ai ∈ K}. By Pπ we denote the projection of Lp(µ) onto Vπ

defined by

Pπ(f) =
m∑
i=1

[
1

µ(Ei)

∫
Ei

f(t)dt]1Ei

for all f ∈ Lp(µ). V denotes the union of all subspaces Vπ of Lp(µ). We recall that
V is a dense subspace of Lp(µ), thus, for each f ∈ Lp(µ), the sequence {Pπ(f)}π
converges to f in Lp(µ).

We recall the following well-known result.

Theorem 2.4 For 1 < p < ∞ and for every partition π = {E1, · · · , Em} ∈ P, the
subspace Vπ is isometrically isomorphic to lmp . Thus n(k)(Vπ) = n(k)(lmp ) for every
k ∈ N.

Theorem 2.5. Let 1 < p < ∞ and k ∈ N. Then for any positive measure µ,

n(k)(Lp(µ)) ≥ n(k)(lp).

Proof. Let Q ∈ SP(kLp(µ):Lp(µ)). Let ϵ > 0. Choose x0 ∈ SLp(µ) such that
∥Q(x0)∥ > 1 − ϵ. By uniform continuity of Q on the closed unit ball of Lp(µ),
there exists some δ > 0 such that x, y ∈ BLp(µ) with ∥x − y∥ < δ implies
that ∥Q(x) − Q(y)∥ < ϵ. Choose π0 ∈ P such that ∥x0 − Pπ0(x0)∥ < δ. Since
∥Pπ0(x0)∥ ≤ 1, we have ∥Q(x0) − Q ◦ Pπ0(x0)∥ < ϵ. Thus ∥Q ◦ Pπ0(x0)∥ >
∥Q(x0)∥ − ϵ > 1 − 2ϵ. Thus we can choose π1 = {E1, · · · , Em} ∈ P such that
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π1 ≥ π0 and ∥Pπ1 ◦ Q ◦ Pπ0(x0)∥ > 1 − 2ϵ. We define R ∈ P(kVπ1 : Vπ1) by
R(Pπ1(x)) = Pπ1 ◦Q ◦ Pπ1(x) for x ∈ Lp(µ). Obviously ∥R∥ ≤ 1. It follows that

(♯) ∥R∥ ≥ ∥R(
Pπ0(x0)

∥Pπ0(x0)∥
)∥ =

∥R(Pπ0(x0))∥
∥Pπ0(x0)∥k

≥ ∥R(Pπ0
(x0))∥

≥ ∥Pπ1 ◦Q ◦ Pπ0(x0)∥
> 1− 2ϵ.

Thus

(♯♯) v(R) ≥ n(k)(Vπ1) ∥R∥
> n(k)(Vπ1) (1− 2ϵ) (by ♯)

= n(k)(lmp ) (1− 2ϵ) (by Theorem 2.4)

≥ n(k)(lp) (1− 2ϵ) (by Theorem 2.1).

Since Vπ1 is a finite dimensional space, there exists (y0, y
∗) ∈ Π(Vπ1) such that

v(R) = |y∗(R(y0))|. It follows that

v(R) = |y∗(R(y0))| = |y∗(Pπ1 ◦Q(y0))|
= |P ∗

π1
◦ y∗(Q(y0))|

≤ v(Q), because (y0, P
∗
π1

◦ y∗) ∈ Π(Vπ1).

By (♯♯), we have (♯♯♯) v(Q) ≥ v(R) > n(k)(lp) (1− 2ϵ). By taking infimum in the
left side of (♯♯♯) over Q ∈ SP(kLp(µ):Lp(µ)), we conclude the proof. �
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