• Title/Summary/Keyword: independent identically distributed

Search Result 137, Processing Time 0.023 seconds

Performance Analysis of Selection Combining Technique for MPSK over Independent But Non-Identically Distributed Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.91-98
    • /
    • 2009
  • This paper provides new exact-closed form expressions for average SER and average BER as well as outage probability for M-PSK signaling with selection combining over independent but non-identically distributed Rayleigh fading paths. The validity of these expressions is verified by the Monte-Carlo simulations. All of numerical results are in excellent agreement with simulation results.

ON A SPITZER-TYPE LAW OF LARGE NUMBERS FOR PARTIAL SUMS OF INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS

  • Miaomiao Wang;Min Wang;Xuejun Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.687-703
    • /
    • 2023
  • In this paper, under some suitable conditions, we study the Spitzer-type law of large numbers for the maximum of partial sums of independent and identically distributed random variables in upper expectation space. Some general results on necessary and sufficient conditions of the Spitzer-type law of large numbers for the maximum of partial sums of independent and identically distributed random variables under sublinear expectations are established, which extend the corresponding ones in classic probability space to the case of sub-linear expectation space.

EXTENSIONS OF SEVERAL CLASSICAL RESULTS FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES TO CONDITIONAL CASES

  • Yuan, De-Mei;Li, Shun-Jing
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.431-445
    • /
    • 2015
  • Extensions of the Kolmogorov convergence criterion and the Marcinkiewicz-Zygmund inequalities from independent random variables to conditional independent ones are derived. As their applications, a conditional version of the Marcinkiewicz-Zygmund strong law of large numbers and a result on convergence in $L^p$ for conditionally independent and conditionally identically distributed random variables are established, respectively.

A CHARACTERIZATION OF GAMMA DISTRIBUTION BY INDEPENDENT PROPERTY

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Let {$X_n,\;n{\geq}1}$ be a sequence of independent identically distributed(i.i.d.) sequence of positive random variables with common absolutely continuous distribution function(cdf) F(x) and probability density function(pdf) f(x) and $E(X^2)<{\infty}$. The random variables $\frac{X_i{\cdot}X_j}{(\Sigma^n_{k=1}X_k)^{2}}$ and $\Sigma^n_{k=1}X_k$ are independent for $1{\leq}i if and only if {$X_n,\;n{\geq}1}$ have gamma distribution.

  • PDF

AN EXTENSION OF RANDOM SUMMATIONS OF INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES

  • Giang, Le Truong;Hung, Tran Loc
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.605-618
    • /
    • 2018
  • The main goal of this paper is to study an extension of random summations of independent and identically distributed random variables when the number of summands in random summation is a partial sum of n independent, identically distributed, non-negative integer-valued random variables. Some characterizations of random summations are considered. The central limit theorems and weak law of large numbers for extended random summations are established. Some weak limit theorems related to geometric random sums, binomial random sums and negative-binomial random sums are also investigated as asymptotic behaviors of extended random summations.

CHARACTERIZATIONS OF GAMMA DISTRIBUTION

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.411-418
    • /
    • 2007
  • Let $X_1$, ${\cdots}$, $X_n$ be nondegenerate and positive independent identically distributed(i.i.d.) random variables with common absolutely continuous distribution function F(x) and $E(X^2)$ < ${\infty}$. The random variables $X_1+{\cdots}+X_n$ and $\frac{X_1+{\cdots}+X_m}{X_1+{\cdots}+X_n}$are independent for 1 $1{\leq}$ m < n if and only if $X_1$, ${\cdots}$, $X_n$ have gamma distribution.

  • PDF

ON CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION BY INDEPENDENCE PROPERTY

  • LEE, MIN-YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.261-265
    • /
    • 2017
  • Let X and Y be independent identically distributed nondegenerate random variables with common absolutely continuous probability distribution function F(x) and the corresponding probability density function f(x) and $E(X^2)$<${\infty}$. Put Z = max(X, Y) and W = min(X, Y). In this paper, it is proved that Z - W and Z + W or$(X-Y)^2$ and X + Y are independent if and only if X and Y have normal distribution.

CONVERGENCE RATES FOR SEQUENCES OF CONDITIONALLY INDEPENDENT AND CONDITIONALLY IDENTICALLY DISTRIBUTED RANDOM VARIABLES

  • Yuan, De-Mei
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1275-1292
    • /
    • 2016
  • The Marcinkiewicz-Zygmund strong law of large numbers for conditionally independent and conditionally identically distributed random variables is an existing, but merely qualitative result. In this paper, for the more general cases where the conditional order of moment belongs to (0, ${\infty}$) instead of (0, 2), we derive results on convergence rates which are quantitative ones in the sense that they tell us how fast convergence is obtained. Furthermore, some conditional probability inequalities are of independent interest.

ON CHARACTERIZATIONS OF THE CONTINUOUS DISTRIBUTIONS BY INDEPENDENCE PROPERTY OF RECORD VALUES

  • JIN, HYUN-WOO;LEE, MIN-YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.651-657
    • /
    • 2017
  • A sequence {$X_n,\;n{\geq}1$} of independent and identically distributed random variables with absolutely continuous (with respect to Lebesque measure) cumulative distribution function F(x) is considered. We obtain two characterizations of a family of continuous probability distribution by independence property of record values.

A NOTE ON THE CHARACTERIZATIONS OF THE GUMBEL DISTRIBUTION BASED ON LOWER RECORD VALUES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.285-289
    • /
    • 2017
  • Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with cdf F(x) which is absolutely continuous with pdf f(x) and F(x) < 1 for all x in ($-{\infty},\;{\infty}$). In this paper, we obtain the characterizations of the Gumbel distribution by lower record values.