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ON CHARACTERIZATIONS OF THE CONTINUOUS

DISTRIBUTIONS BY INDEPENDENCE PROPERTY OF

RECORD VALUES
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Abstract. A sequence {Xn, n ≥ 1} of independent and identically dis-

tributed random variables with absolutely continuous (with respect to
Lebesque measure) cumulative distribution function F (x) is considered.
We obtain two characterizations of a family of continuous probability dis-
tribution by independence property of record values.
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1. Introduction

Suppose that {Xn, n ≥ 1} is a sequence of independent and identically dis-
tributed (i.i.d.) random variables with cumulative distribution function (cdf)
F (x) and probability density function (pdf) f(x). Let Yn = max(min){X1, X2,
· · · , Xn} for n ≥ 1. We say Xj is an upper(lower) record value of {Xn, n ≥ 1}
if Yj > (<)Yj−1 for j > 1. By definition, X1 is an upper as well as a lower
record value. One can transform the upper records to lower records by replacing
the original sequence of {Xj} by {−Xj , j ≥ 1} or (if P (Xj > 0) = 1 for all
j) by {1/Xj , j ≥ 1}. We defined the upper record times {U(n), n ≥ 2} where
U(1) = 1, and U(n) = min{j | j > U(n − 1), Xj > XU(n−1)}. Similarly, the
lower record times {L(n), n ≥ 2} where L(1) = 1, and L(n) = min{j | j >
L(n− 1), Xj > XL(n−1)}.

In [3] Lee and Chang showed that X has a Pareto random variable with

parameter θ if and only if
XU(n+1)

XU(n)
and XU(n) for n ≥ 1 are independent. In [4]

Yanev and Ahsanullah studied characterizations based on the regression of linear
combinations of record values. Recently, in [2] Juhas and Skrivankova presented
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characterization of general classes of distributions with the independent property
that the random variables g(Ln) and g(Ln+1)−g(Ln) are independent for n ≥ 1
if and only if X has general classes of distributions.

The current investigation was induced by characterizations based on indepen-

dent property in [2]. Namely, one can ask whether the independence
g(XU(n+1))

g(XU(n))

and g(XU(n)) or
g(XL(n+1))

g(XL(n))
and g(XL(n)) guarantee the characterization of gen-

eral classes of distributions.
In this paper we investigate characterizations of continuous distributions by

independence property of record values.

2. Main results

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed nonnegative random variables with cdf F (x) which is absolutely con-
tinuous with pdf f(x) and F (x) < 1. Let g(x) is an increasing and differentiable
function with g(x) → 1 as x → a+ and g(x) → ∞ as x → b− for all x ∈ (a, b).

Then F (x) = 1 −
(
g(x)

)−α
, for α > 0, if and only if

g(XU(n+1))

g(XU(n))
and g(XU(n))

are independent for n ≥ 1.

Proof. The joint pdf fn+1,n(x, y) of XU(n) and XU(n+1) can be written as

fn+1,n(x, y) =
{R(x)}n−1

Γ(n)
r(x)f(y)

where R(x) = − ln F̄ (x), F̄ (x) = 1−F (x) and r(x) = d
dxR(x) =

f(x)
F̄ (x)

, for n ≥ 1.

Consider the functions U = g(XU(n)) and V =
g(XU(n+1))

g(XU(n))
. It follows that

xU(n) = g−1(u), xU(n+1) = g−1(uv) and J = ∂
∂u

(
g−1(u)

)
∂
∂v

(
g−1(uv)

)
. Since

g(x) is an increasing and differentiable function, both ∂
∂u

(
g−1(u)

)
and ∂

∂v

(
g−1(uv)

)
are positive.

Thus we can write the joint pdf fU,V (u, v) of u and v as

fU,V (u, v) =
R
(
g−1(u)

)n−1

Γ(n)
r
(
g−1(u)

)
f
(
g−1(uv)

) ∂
∂u

(
g−1(u)

) ∂
∂v

(
g−1(uv)

)
for u > 1 and v > 1.

If F (x) = 1−
(
g(x)

)−α
for all g(x) > 1 and α > 0, then we get

fU,V (u, v) =
(α)n−1

(
ln(g(g−1(u)))

)n−1
α(g(g−1(u)))−α−1g′

(
g−1(u)

)
Γ(n)

×
α(g(g−1(uv)))−α−1g′

(
g−1(uv)

)
∂
∂u

(
g−1(u)

)
∂
∂v

(
g−1(uv)

)(
g(g−1(u))

)−α (1)
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=
(α)n−1

(
ln(g(g−1(u)))

)n−1
α(g(g−1(u)))−α−1α(g(g−1(uv)))−α−1

Γ(n)

×
∂
∂u

(
g(g−1(u))

)
∂
∂v

(
g(g−1(uv))

)(
g(g−1(u))

)−α =
(α)n−1

Γ(n)
α2
(
ln(u)

)n−1
(uv)−α−1,

for all u > 1, v > 1 and α > 0.
We can get the pdf fV (v) of v by integration of fU,V (u, v) as

fV (v) = vα−1

∫ ∞

1

fU,V (u, v)du = αv−α−1, v > 1, α > 0. (2)

Also, the pdf fU (u) of u is given by

fU (u) =
αn−1

(
ln(g(g−1(u)))

)n−1

Γ(n)
α
(
g(g−1(u))

)−α−1

=
αn

Γ(n)

(
ln(u)

)n−1
u−α−1, u > 1, α > 0.

(3)

From (1), (2) and (3) we obtain fU (u)fV (v) = fU,V (u, v). Hence U =

g(XU(n)) and V =
g(XU(n+1))

g(XU(n))
are independent.

Now we will prove the sufficient condition. Let us use the transformation

U = g(XU(n)) and V =
g(XU(n+1))

g(XU(n))
. Jacobian of the transformation is J =

∂
∂u

(
g−1(u)

)
× ∂

∂v

(
g−1(uv)

)
. Since g(x) is an increasing and differentiable func-

tion, both ∂
∂u

(
g−1(u)

)
and ∂

∂v

(
g−1(uv)

)
are positive. Thus we can write the

joint pdf fU,V (u, v) of U and V as

fU,V (u, v)

=
R
(
g−1(u)

)n−1

Γ(n)
r
(
g−1(u)

)
f
(
g−1(uv)

) ∂
∂u

(
g−1(u)

) ∂
∂v

(
g−1(uv)

) (4)

for all u > 1 and v > 1.
The pdf fU (u) of U is given by

fU (u) =
R
(
g−1(u)

)n−1

Γ(n)
f
(
g−1(u)

) ∂
∂u

(
g−1(u)

)
(5)

for all u > 1 and n ≥ 1.
Since u and v are independent, we get the pdf fV (u) of v from (4) and (5) as

fV (v) =
f
(
g−1(uv)

)
F̄
(
g−1(u)

) ∂

∂v

(
g−1(uv)

)
, u > 1, v > 1. (6)

Integrating of (6) with respect to v from v1 to ∞ and simplifying, we get∫ ∞

v1

fV (v)dv = F̄V (v1) =
F
(
g−1(∞)

)
− F

(
g−1(uv1)

)
F̄
(
g−1(u)

) (7)

for any fixed v1, v1 > 1.
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Now taking u→ 1, g−1(u) → a+ and F
(
g−1(1)

)
→ 0. Since F

(
g−1(∞)

)
= 1,

it holds F̄V (v1) = F̄
(
g−1(v1)

)
for any fixed v1, v1 > 1.

Let F̄
(
g−1(y)

)
= F̄ (y), for y > 1. Then we obtain the following equation

from (7)

F̄ (u)F̄ (v1) = F̄ (uv1). (8)

for all u, u > 1 and any fixed v1, v1 > 1.
By the theory of functional equation see [1], the only continuous solution of

(8) with the boundary conditions F̄ (a) = 1 and F̄ (b) = 0 is

F̄ (x) = (g(x))−α

for all g(x) > 1 and α > 0.
This completes the proof. �

Remark 2.1. If we set g(x) =
(

1
1−exp[−e−λx]

) 1
α , we can obtain characterization

by independence property concerning the Generalized Gumbel distribution. For
λ = 1, we have the Gumbel distribution in [2].

Remark 2.2. If we set g(x) =
(

1
1−exp[−(−x)−β ]

) 1
α , we can obtain characteriza-

tion by independence property concerning the Weibull for extream value distri-
bution in [2].

Remark 2.3. A list of continuous distributions with cdf and the corresponding
forms of g(x) are given in Table 1.

Table 1. Examples based on the distribution function F̄ (x) = (g(x))−α

Distribution g(x) F̄ (x)
Pareto x x−α, 1 < x <∞
Weibull ex

p

e−αx
p

, 0 < x <∞
Beta 2nd kind (1 + x) (1 + x)−α, 0 < x <∞

Lomax (1 + x
λ )

1
α (1 + x

λ )
−1, 0 < x <∞

Singh-Maddala (1 + θxp) (1 + θxp)−α, 0 < x <∞
Gompertz

(
exp[λµ (e

µx − 1)]
) 1

α exp[−λ
µ (e

µx − 1)], 0 < x <∞

Rayleigh
(
exp[2−1θ−2x2]

) 1
α exp[−2−1θ−2x2], 0 < x <∞

Inverse Weibull
(

1

1−e−θx−p

) 1
α 1− e−θx

−p

, 0 < x <∞
MW exp[xλeβx] exp[−αxλeβx], 0 < x <∞
EP

(
e−1 exp(ex

β

)
) 1

α exp[1− ex
β

], 0 < x <∞
Extream value I

(
exp[ex]

) 1
α exp[−ex], −∞ < x <∞

Lognormal
(

1
1−Φ( ln x−µ

σ )

) 1
α 1− Φ( ln x−µσ ), 0 < x <∞
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Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of independent and identically
distributed nonnegative random variables with cdf F (x) which is absolutely con-
tinuous with pdf f(x) and F (x) < 1. Let g(x) is an increasing and differentiable
function with g(x) → 0 as x → a+ and g(x) → 1 as x → b− for all x ∈ (a, b).

Then F (x) =
(
g(x)

)α
, for α > 0, if and only if

g(XL(n+1))

g(XL(n))
and g(XL(n)) are

independent for n ≥ 1.

Proof. If F (x) =
(
g(x)

)α
, then it is easy to see that

g(XL(n+1))

g(XL(n))
and g(XL(n)) are

independent.

Let us use the transformation U = g(XL(n)) and V =
g(XL(n+1))

g(XL(n))
. Jacobian of

the transformation is J = ∂
∂u

(
g−1(u)

)
∂
∂v

(
g−1(uv)

)
. Since g(x) is an increasing

and differentiable function, both ∂
∂u

(
g−1(u)

)
and ∂

∂v

(
g−1(uv)

)
are positive.

Thus we can write the joint pdf fU,V (u, v) of U and V as

fU,V (u, v) =
H
(
g−1(u)

)n−1

Γ(n)
h
(
g−1(u)

)
f
(
g−1(uv)

) ∂
∂u

(
g−1(u)

) ∂
∂v

(
g−1(uv)

)
(9)

for all 0 < u < 1 and 0 < v < 1.
The pdf fU (u) of U is given by

fU (u) =
H
(
g−1(u)

)n−1

Γ(n)
f
(
g−1(u)

) ∂
∂u

(
g−1(u)

)
(10)

for 0 < u < 1.
Since u and v are independent, we get the pdf fV (u) of v from (9) and (10)

as

fV (v) =
f
(
g−1(uv)

)
F
(
g−1(u)

) ∂

∂v

(
g−1(uv)

)
(11)

for all 0 < u < 1 and 0 < v < 1.
Integrating of (11) with respect to v from 0 to v1 and simplifying, we get∫ v1

0

fV (v)dv = FV (v) =
F
(
g−1(uv1)

)
− F

(
g−1(0)

)
F
(
g−1(u)

)
for any fixed v1, 0 < v1 < 1.

Now taking u → 1, g−1(u) → b− and F
(
g−1(1)

)
→ 1. Since F

(
g−1(0)

)
= 0,

it holds FV (v1) = F
(
g−1(v1)

)
for any fixed v1, 0 < v1 < 1.

Let F
(
g−1(y)

)
= F (y), for 0 < y < 1. Then we obtain the following equation

F (u)F (v1) = F (uv1), (12)

for all u, 0 < u < 1 and any fixed v1, 0 < v1 < 1.
By the theory of functional equation, see [1], the only continuous solution of

(12) with the boundary conditions F (a) = 0 and F (b) = 1 is

F (x) = (g(x))α
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for all 0 < g(x) < 1 and α > 0.
This completes the proof. �

Remark 2.4. If we set g(x) =
(
exp[−e−λx]

)1/α
, we obtain characterization

by independence property concerning the Generalized Gumbel distribution. For
λ = 1, we have the Gumbel distribution in [2].

Remark 2.5. If we set g(x) =
(
e−(−x)−β) 1

α , we obtain characterization by
independence property concerning the Weibull for extream value distribution in
[2].

Remark 2.6. A list of continuous distributions with cdf and the corresponding
forms of g(x) are given in Table 2.

Table 2. Examples based on the distribution function F (x) =
(
g(x)

)α
Distribution g(x) F (x)

Power x xα, 0 < x < 1

Weibull
(
1− e−(x/λ)β

) 1
α 1− e−(x/λ)β , 0 < x <∞

EP 1− (1 + x)−λ (1− (1 + x)−λ)α, 0 < x <∞
GR 1− e−(λx)2 (1− e−(λx)2)α, 0 < x <∞

Inverse Weibull
(
e−θx

−p)1/α
e−θx

−p

, 0 < x <∞
Burr Type II (1 + e−x)−1 (1 + e−x)−α, −∞ < x <∞
Lognormal

(
Φ( lnx−µσ )

) 1
α Φ( ln x−µσ ), 0 < x <∞

Cauchy
(
1
2 + 1

π tan−1(x)
)1/α 1

2 + 1
π tan−1(x), −∞ < x <∞

Kappa ( xp

λ+xp )
1/α xp

λ+xp , 0 < x <∞
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