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EXTENSIONS OF SEVERAL CLASSICAL RESULTS FOR

INDEPENDENT AND IDENTICALLY DISTRIBUTED

RANDOM VARIABLES TO CONDITIONAL CASES

De-Mei Yuan and Shun-Jing Li

Abstract. Extensions of the Kolmogorov convergence criterion and the
Marcinkiewicz-Zygmund inequalities from independent random variables
to conditional independent ones are derived. As their applications, a
conditional version of the Marcinkiewicz-Zygmund strong law of large
numbers and a result on convergence in Lp for conditionally independent
and conditionally identically distributed random variables are established,
respectively.

1. Introduction

We will be working on a fixed probability space (Ω,A, P ) and let F be a
sub-σ-algebra of A. A finite sequence {Xk, 1 ≤ k ≤ n} of random variables is
said to be conditionally independent given F (F -independent, in short) if

P

{

n
∩

k=1
(Xk ∈ Bk) |F

}

=

n
∏

k=1

P (Xk ∈ Bk |F ) a.s.

for any choice of finitely many sets B1, B2, . . . , Bn ∈ B, where B is the Borel
σ-algebra in R. An infinite sequence {Xn, n ≥ 1} of random variables is said
to be F -independent if every finite subsequence is F -independent.

Of course, F -independence reduces to the usual (unconditional) indepen-
dence if F = {Ø, Ω} is the trivial σ-algebra. In Prakasa Rao [9], concrete
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examples were given, where independent random variables lose their indepen-
dence under conditioning, and dependent random variables become indepen-
dent under conditioning.

We next recall the concept of conditionally identical distribution. Two ran-
dom variablesX and Y are said to be conditionally identically distributed given
F (F -identically distributed, in short) if

P (X ∈ B |F ) = P (Y ∈ B |F ) a.s. for any B ∈ B.

A collection of random variables is said to be F -identically distributed if every
pair of random variables in the collection is F -identically distributed.

Conditionally identical distribution, just like conditional independence, re-
duces to the usual identical distribution if the conditional σ-algebra F =
{Ø, Ω}. It is easily shown that conditionally identical distribution implies
identical distribution, but the converse implication need not always be true,
such counterexamples can be found in Yuan et al. [18] and Roussas [12].

Let {Xn, n ≥ 1} be exchangeable random variables, that is, the joint distri-
bution of (X1, X2, . . . , Xn) is the same as that of (Xπ(1), Xπ(2), . . . , Xπ(n)) for
each n ≥ 1 and any permutation π of {1, 2, . . . , n}. By de Finetti’s theorem,
{Xn} is conditionally independent and conditionally identically distributed
given either its tail σ-algebra or the σ-algebra of permutable events, c.f. The-
orem 7.3.2 of Chow and Teicher [2].

The statistical perspective of conditional independence and conditionally
identical distribution is that of a Bayesian. A problem begins with a param-
eter θ with its prior probability distribution that exists only in mind of the
investigator. The statistical model that is most commonly in use is that of a
sequence {Xn, n ≥ 1} of observable random variables that is independent and
identically distributed for each given value of θ. As such, {Xn, n ≥ 1} is F -
independent and F - identically distributed but neither necessarily independent
nor necessarily identically distributed, where F = σ (θ).

Let {Xn, n ≥ 1} be a sequence of random variables and Sn =
∑n

k=1 Xk.
Majerek et al. [7] proved that if {Xn, n ≥ 1} is F -independent and F -identically
distributed, then

limn→∞ n−1Sn = Y a.s.

if and only if EFX = Y a.s., which is a conditional version of the Kolmogorov
strong law of large numbers.

The further derivations are conditional versions of the generalized Kol-
mogorov inequality and Hájek-Rényi inequality due to Prakasa Rao [9] as well
as conditional central limit theorems due to Yuan et al. [18].

Hence we are just wondering which results on independent and identically
distributed random variables have analogous ones in a conditional setting? As
pointed out by Prakasa Rao [9], one does have to derive results under condi-
tioning if there is a need even though the results and proofs of such results may
be analogous to those under the non-conditioning setup. This motivates our
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original interest in investigating conditionally independent and conditionally
identically distributed random variables.

Starting from the conditional independence given a sub-σ-algebra F , the
past nearly a decade has witnessed the active development of a rich probability
theory of conditional dependence and many important theoretical results have
been obtained. See, for instance, Christofides and Hadjikyriakou [3] for condi-
tional demimartingale, Liu and Prakasa Rao [5] for conditional Borel-Cantelli
lemma, Ordóñez Cabrera et al. [8] for conditionally negatively quadrant de-
pendence, Wang and Wang [14] for conditional demimartingale and conditional
N-demimartingale, Yuan et al. [15] for conditionally negative association, Yuan
and Lei [17] for conditionally strong mixing, Yuan et al. [16] for conditionally
uniformly strong mixing, Yuan and Xie [19] for conditionally linearly nega-
tively quadrant dependence, Yuan and Yang [20] for conditional association.
These achievements also stimulate us to study conditionally independent and
conditionally identically distributed random variables.

In Section 2, we first derive an extension of the Kolmogorov convergence
criterion for independent random variables to conditional case, and then, as
its application, establish a conditional version of the Marcinkiewicz-Zygmund
strong law of large numbers for conditionally independent and conditionally
identically distributed random variables. An extension of the Marcinkiewicz-
Zygmund inequalities and a result on convergence in Lp as its application are
studied in Section 3.

Following Prakasa Rao [9], for the sake of convenience, we will use the no-
tation PF (A) to denote P (A |F ) and EFX to denote E (X |F ). In addition,
V arFX stands for the conditional variance of X given F , that is,

V arFX = EF
(

X − EFX
)2

.

2. Conditional versions of Kolmogorov convergence criterion and

Marcinkiewicz-Zygmund strong law

Our first result is not only a conditional version of the Kolmogorov conver-
gence criterion, but also an extension of Theorem 3.5 appeared in Majerek et
al. [7]. The authors did not know this criterion has appeared in Liu and Zhang
[6] until revising the paper, but the proof here follows a different route from
that paper.

Theorem 2.1. If {Xn, n ≥ 1} is a sequence of F-independent random variables

such that
∑∞

n=1 V arFXn < ∞ a.s., then Sn − EFSn converges almost surely.

Proof. For any positive integers m and n with m > n, applying the conditional
version of Kolomogorov’s inequality, Theorem 3.4 in Majerek et al. [7], to the
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sequence Xn+1, . . . , Xm, we find

PF

(

max
n+1≤k≤m

∣

∣

(

Sk − EFSk

)

−
(

Sn − EFSn

)
∣

∣ > ε

)

= PF

(

max
n+1≤k≤m

∣

∣

∣

∣

∣

k
∑

j=n+1

(

Xj − EFXj

)

∣

∣

∣

∣

∣

> ε

)

≤ ε−2
m
∑

k=n+1

V arFXk

for any ε > 0. Letting m approach infinity, we have

PF

(

sup
k≥n+1

∣

∣

(

Sk − EFSk

)

−
(

Sn − EFSn

)∣

∣ > ε

)

≤ ε−2
∞
∑

k=n+1

V arFXk.

In view of the assumption that
∑∞

n=1 V arFXn < ∞ a.s., this implies that

PF

(

sup
k≥n+1

∣

∣

(

Sk − EFSk

)

−
(

Sn − EFSn

)∣

∣ > ε

)

→ 0 a.s. as n → ∞,

which together with the dominated convergence theorem means

P

(

sup
k≥n+1

∣

∣

(

Sk − EFSk

)

−
(

Sn − EFSn

)
∣

∣ > ε

)

→ 0 as n → ∞.

By Theorem 2.10.1 of Shiryaev [13], the sequence
{

Sn − EFSn, n ≥ 1
}

is fun-

damental with probability 1, so that Sn − EFSn converges almost surely. �

As usual, IA denotes the indicator function of an event A and sometimes it is
written as I (A). As an application of Theorem 2.1, a conditional version of the
Marcinkiewicz and Zygmund strong law of large numbers can be established.

Theorem 2.2. Let 0 < p < 2. Suppose that {Xn, n ≥ 1} is a sequence of F-

independent and F-identically distributed random variables with EF |X1|
p
< ∞

a.s. and EFX1 = 0 a.s. when 1 ≤ p < 2. Then

(2.1) n−1/pSn → 0 a.s.

In order to prove the above theorem, let us first give two lemmas. It is
worthy to note that Lemma 2.4 below serves not only the proof of Theorem
2.2, but also that of Theorem 2.6.

Lemma 2.3. Let 0 < p < 2. Suppose that {Xn, n ≥ 1} is a sequence of F-

independent and F-identically distributed random variables, and set

(2.2) Yn = XnI
(

|Xn| ≤ n1/p
)

, n ≥ 1.

If EF |X1|
p
< ∞ a.s., then

∞
∑

n=1

V arF
(

n−1/pYn

)

< ∞ a.s.
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Proof. If α > 0 and n ≥ 1, then

1

αnα
=

∫ ∞

n

dx

xα+1
=

∞
∑

k=n

∫ k+1

k

dx

xα+1
≥

∞
∑

k=n

1

(k + 1)
α+1 =

∞
∑

k=n+1

1

kα+1
.

Suppose, further, that n ≥ 2, then

∞
∑

k=n

1

kα+1
≤

1

α (n− 1)
α ≤

2α

αnα
.

Exploiting this relation and employing the slicing technique, we have

∞
∑

n=1

V arF
(

n−1/pYn

)

≤

∞
∑

n=1

n−2/pEFY 2
n

=
∞
∑

n=1

n−2/pEF
[

X2
1I
(

|X1| ≤ n1/p
)]

=

∞
∑

n=1

n−2/p
n
∑

k=1

EF
[

X2
1I
(

(k − 1)
1/p

< |X1| ≤ k1/p
)]

=
∞
∑

k=1

∞
∑

n=k

n−2/pEF
[

X2
1I
(

(k − 1)1/p < |X1| ≤ k1/p
)]

=

∞
∑

n=1

n−2/pEF
[

X2
1I (|X1| ≤ 1)

]

+

∞
∑

k=2

(

∞
∑

n=k

n−2/p

)

EF
[

X2
1I
(

(k − 1)
1/p

< |X1| ≤ k1/p
)]

≤

∞
∑

n=1

n−2/p +
22/p−1

2/p− 1

∞
∑

k=2

k1−2/pEF
[

X2
1I
(

(k − 1)
1/p

< |X1| ≤ k1/p
)]

≤

∞
∑

n=1

n−2/p +
22/p−1p

2− p

×

∞
∑

k=2

k1−2/p
(

k1/p
)2−p

EF
[

|X1|
p
I
(

(k − 1)
1/p

< |X1| ≤ k1/p
)]

=

∞
∑

n=1

n−2/p +
22/p−1p

2− p

∞
∑

k=2

EF
[

|X1|
p
I
(

(k − 1)
1/p

< |X1| ≤ k1/p
)]

≤

∞
∑

n=1

n−2/p +
22/p−1p

2− p
EF |X1|

p
< ∞ a.s.

�
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Lemma 2.4. Let p > 0. If {Xn, n ≥ 1} is a sequence of F-independent and

F-identically distributed random variables, then the following statements are

equivalent:

(i) EF |X1|
p
< ∞ a.s.;

(ii)
∑∞

n=1 P
F
(

|Xn| > n1/pε
)

< ∞ a.s. for all ε > 0;

(iii) P
(

|Xn| > n1/pε i.o.
)

= 0 for all ε > 0;

(iv) n−1/pXn → 0 a.s.

Proof. Since the Xn’s have the same conditional distribution, the equivalence
between (i) and (ii) is evident from the estimates

EF |X1|
p =

∞
∑

n=1

EF |X1|
p
I (n− 1 < |X1|

p ≤ n)

≤

∞
∑

n=1

nPF (n− 1 < |X1|
p
≤ n)

=

∞
∑

n=1

n
∑

k=1

PF (n− 1 < |X1|
p
≤ n)

=

∞
∑

k=1

∞
∑

n=k

PF (n− 1 < |X1|
p
≤ n)

=
∞
∑

k=1

PF (|X1|
p
> k − 1)

≤ 1 +

∞
∑

k=1

PF (|X1|
p
> k)

and

EF |X1|
p ≥

∞
∑

n=1

(n− 1)PF (n− 1 < |X1|
p ≤ n)

=

∞
∑

n=1

nPF (n < |X1|
p
≤ n+ 1)

=

∞
∑

n=1

n
∑

k=1

PF (n < |X1|
p
≤ n+ 1)

=

∞
∑

k=1

∞
∑

n=k

PF (n < |X1|
p
≤ n+ 1)

=

∞
∑

k=1

PF (|X1|
p
> k).

According to the first conditional Borel-Cantelli lemma, Lemma 3.2 in Ma-
jerek et al. [7], part (ii) implies part (iii). Conversely, noting F -independence,
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the second conditional Borel-Cantelli lemma, Lemma 3.3 in the above reference,
tells us that

P
(

|Xn| > n1/pε i.o.
)

= P

(

∞
∑

n=1

PF
(

|Xn| > n1/pε
)

= ∞

)

,

which together with (iii) yields

P

(

∞
∑

n=1

PF
(

|Xn| > n1/pε
)

= ∞

)

= 0,

so that (ii) holds.
Finally, the equivalence between (iii) and (iv) is an immediate consequence

of the definition of almost sure convergence. �

Proof of Theorem 2.2. Let Yn be defined as in (2.2). Then Lemma 2.3 assures
us that

∞
∑

n=1

V arF
(

n−1/pYn

)

< ∞ a.s.,

which, in view of Theorem 2.1, yields
∞
∑

n=1

n−1/p
(

Yn − EFYn

)

converges a.s.,

so that by the Kronecker lemma

n−1/p
n
∑

k=1

(

Yk − EFYk

)

→ 0 a.s.

Next we wish to show that

(2.3) n−1/p
n
∑

k=1

EFYk → 0 a.s.

in order to conclude that

(2.4) n−1/p
n
∑

k=1

Yk → 0 a.s.

First, let 0 < p < 1. Some small computations yield
∣

∣

∣

∣

∣

n
∑

k=1

EFYk

∣

∣

∣

∣

∣

≤
n
∑

k=1

EF
[

|Xk| I
(

|Xk| ≤ k1/p
)]

=

n
∑

k=1

EF
[

|Xk| I
(

|Xk| ≤ k1/(2p)
)]

+

n
∑

k=1

EF
[

|Xk| I
(

k1/(2p) < |Xk| ≤ k1/p
)]
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≤

n
∑

k=1

(

k1/(2p)
)1−p

EF
[

|Xk|
p
I
(

|Xk| ≤ k1/(2p)
)]

+

n
∑

k=1

(

k1/p
)1−p

EF
[

|Xk|
p
I
(

k1/(2p) < |Xk| ≤ k1/p
)]

≤

n
∑

k=1

k(1−p)/(2p)EF |X1|
p
+

n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/(2p)
)]

≤ n(1+p)/(2p)EF |X1|
p
+

n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/(2p)
)]

.

Thus

n−1/p

∣

∣

∣

∣

∣

n
∑

k=1

EFYk

∣

∣

∣

∣

∣

≤ n(p−1)/(2p)EF |X1|
p

+ n−1/p
n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/(2p)
)]

,

which converges to 0 almost surely, since the first term in the right-hand side
converging to 0 almost surely is evident, and the second term converging to 0
almost surely from Lemma A.6.1 in Gut [4] and the observations

n−1/p
n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/(2p)
)]

≤
1

∑n

k=1 k
1/p−1

n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/(2p)
)]

and

EF
[

|X1|
p
I
(

|X1| > k1/(2p)
)]

→ 0 a.s. as k → ∞.

Next, let 1 ≤ p < 2. Then, by the assumption of EFX1 = 0 a.s.,
∣

∣

∣

∣

∣

n
∑

k=1

EFYk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

k=1

EF
[

XkI
(

|Xk| > k1/p
)]

∣

∣

∣

∣

∣

≤

n
∑

k=1

EF
[

|Xk| I
(

|Xk| > k1/p
)]

≤

n
∑

k=1

(

k1/p
)1−p

EF
[

|X1|
p
I
(

|X1| > k1/p
)]

=

n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/p
)]

,
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which means

(2.5) n−1/p

∣

∣

∣

∣

∣

n
∑

k=1

EFYk

∣

∣

∣

∣

∣

≤ n−1/p
n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/p
)]

.

Since 1/2 < 1/p ≤ 1,
∑n

k=1 k
1/p−1 ≤ pn1/p by Lemma A.3.1 in Gut [4]. Again

by using Lemma A.6.1 in Gut [4], we can continue (2.5) to get

n−1/p

∣

∣

∣

∣

n
∑

k=1

EFYk

∣

∣

∣

∣

≤ p∑
n
k=1 k1/p−1n

−1/p
n
∑

k=1

k1/p−1EF
[

|X1|
p
I
(

|X1| > k1/p
)]

→ 0.

In both cases, (2.3) and hence (2.4) holds.
Finally, from EF |X1|

p
< ∞ a.s. and Lemma 2.4 we have

P
(

|Xn| > n1/p i.o.
)

= 0,

or, equivalently,
P (Xn 6= Yn i.o.) = 0,

which indicates that
∑∞

n=1 (Xn − Yn) converges almost surely, and hence we
complete the proof of (2.1). �

Remark 2.5. If 0 < p < 1 and {Xn, n ≥ 1} is a sequence of identically dis-
tributed random variables with E |X1|

p
< ∞, then

∑∞

n=1 n
−1/p |Xn| < ∞ a.s.

(see Lemma 3.2.1 of Chandra [1]). Hence (2.1) holds irrespective of any de-
pendence condition. In Theorem 2.2, although the assumption of F -identical
distribution is stronger than identical distribution of {Xn, n ≥ 1}, the assump-
tion of EF |X1|

p
< ∞ a.s. is weaker than E |X1|

p
< ∞.

Now we consider the converse of the conditional Marcinkiewicz-Zygmund
strong law.

Theorem 2.6. Suppose that {Xn, n ≥ 1} is a sequence of F-independent and

F-identically distributed random variables. If for some F-measurable random

variable Y and for some p ∈ (0, 2),

n−1/p (Sn − nY ) → 0 a.s.,

then EF |X1|
p
< ∞ a.s. and EFX1 = Y a.s. when 1 ≤ p < 2.

Proof. Note that

n−1/pXn = n−1/pY + n−1/p (Sn − nY )

− [(n− 1)/n]
1/p

(n− 1)
−1/p

[Sn−1 − (n− 1)Y ] → 0 a.s.,

so that EF |X1|
p
< ∞ a.s. by Lemma 2.4. Moreover, if 1 ≤ p < 2, then

n−1Sn = n1/p−1n−1/p (Sn − nY ) + Y → Y a.s.

Via an appeal to the necessity part of Theorem 4.2 in Majerek et al. [7], we
thus get EFX1 = Y . �
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3. Conditional versions of Marcinkiewicz-Zygmund inequalities and

convergence in L
p

We first restate, in a slightly modified form, Theorem 4.1 of [12], which is a
conditional version of Fubini’s theorem.

Lemma 3.1. Let X (·, ·): Ω × R → R be A × B-measurable and either non-

negative or P × µ-integrable, where µ is the Lebesgue measure. Then

EF

∫

R

X (·, t)dt =

∫

R

EFX (·, t)dt a.s.

Lemma 3.2 is a simple consequence of Lemma 1 in Prakasa Rao [9].

Lemma 3.2. Let p > 1 and let X1, X2, . . . , Xn be F-independent random

variables with EFXk = 0 a.s. for all 1 ≤ k ≤ n. If ε1, ε2, . . . , εn are given with

εk = ±1 for all k, then

EF

∣

∣

∣

∣

∣

n
∑

k=1

εkXk

∣

∣

∣

∣

∣

p

≤ 2pEF

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p

a.s.

Proof. We may (by relabeling indices if necessary) assume that ε1 = · · · = εj =
1, εj+1 = · · · = εn = −1 for some j ∈ {1, . . . , n− 1} and then define

X ′ =

j
∑

k=1

Xk, X ′′ =

n
∑

k=j+1

Xk.

Clearly X ′ + X ′′ =
∑n

k=1 Xk and X ′ − X ′′ =
∑n

k=1 εkXk. Our assumptions
imply that EFX ′ = EFX ′′ = 0 a.s. andX ′ andX ′′ are F -independent, whence
EF |X ′|

p
≤ EF |X ′ +X ′′|

p
and EF |X ′′|

p
≤ EF |X ′ +X ′′|

p
from Lemma 1 of

Prakasa Rao [9]. The conditional Minkowski inequality applies and gives

(

EF

∣

∣

∣

∣

∣

n
∑

k=1

εkXk

∣

∣

∣

∣

∣

p)1/p

=
(

EF |X ′ −X ′′|
p)1/p

≤
(

EF |X ′|
p)1/p

+
(

EF |X ′′|
p)1/p

≤ 2
(

EF |X ′ +X ′′|
p)1/p

= 2

(

EF

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p)1/p

.

This yields the desired result. �

Next let us recall Khintchine’s inequality (see e.g. Rosenthal [11]). Suppose
that r (t) is the function with period one defined on the real line by r (t) = 1
or −1 according as 0 ≤ t < 1/2 or 1/2 ≤ t < 1 and put rk (t) = r

(

2k−1t
)

,
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k = 1, 2, . . . , n, the first n Rademacher functions. Then, for any p > 0, there
exist constants Ap and Bp depending only p, so that for any n scalars c1, . . . , cn,

(3.1) Ap

(

n
∑

k=1

c2k

)p/2

≤

∫ 1

0

∣

∣

∣

∣

∣

n
∑

k=1

ckrk (t)

∣

∣

∣

∣

∣

p

dt ≤ Bp

(

n
∑

k=1

c2k

)p/2

.

With the help of the above lemmas, we can establish the conditional versions
of Marcinkiewicz-Zygmund inequalities, its unconditional version is Theorem
3.8.1 of Gut [4].

Theorem 3.3. Let p ≥ 1. Suppose that X1, X2, . . . , Xn are F-independent

random variables with EF |Xk|
p
< ∞ a.s. and EFXk = 0 a.s. for all 1 ≤ k ≤

n. Then there exist constants A∗
p and B∗

p depending only on p such that

(3.2) A∗
pE

F

(

n
∑

k=1

X2
k

)p/2

≤ EF

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p

≤ B∗
pE

F

(

n
∑

k=1

X2
k

)p/2

a.s.

In particular,

(3.3) A∗
pE

(

n
∑

k=1

X2
k

)p/2

≤ E

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p

≤ B∗
pE

(

n
∑

k=1

X2
k

)p/2

.

Proof. Relation (3.3) follows from (3.2) by taking expectations, so we need only
to prove (3.2). From Lemma 3.2,

(3.4) 2−pEF

∣

∣

∣

∣

∣

n
∑

k=1

rk (t)Xk

∣

∣

∣

∣

∣

p

≤ EF

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p

≤ 2pEF

∣

∣

∣

∣

∣

n
∑

k=1

rk (t)Xk

∣

∣

∣

∣

∣

p

a.s.

Integrating the left-most inequality in (3.4) with respect to t from 0 to 1 and
using Lemma 3.1, we obtain by (3.1) that

EF

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p

≥ 2−p

∫ 1

0

EF

∣

∣

∣

∣

∣

n
∑

k=1

rk (t)Xk

∣

∣

∣

∣

∣

p

dt

= 2−pEF

∫ 1

0

∣

∣

∣

∣

∣

n
∑

k=1

rk (t)Xk

∣

∣

∣

∣

∣

p

dt ≥ 2−pApE
F

(

n
∑

k=1

X2
k

)p/2

a.s.

In the same way, the right-most inequality in (3.4) yields

EF

∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

p

≤ 2p
∫ 1

0

EF

∣

∣

∣

∣

∣

n
∑

k=1

rk (t)Xk

∣

∣

∣

∣

∣

p

dt

= 2pEF

∫ 1

0

∣

∣

∣

∣

∣

n
∑

k=1

rk (t)Xk

∣

∣

∣

∣

∣

p

dt ≤ 2pBpE
F

(

n
∑

k=1

X2
k

)p/2

a.s.

Hence (3.2) follows from the last two inequalities with A∗
p = 2−pAp and B∗

p =
2pBp, where Ap and Bp are the constants in Khintchine’s inequality. �
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As an application of Theorem 3.3, we can derive a result on convergence in
Lp, which is worth comparing with Theorem 2.2.

Theorem 3.4. Let 0 < p < 2. Suppose that {Xn, n ≥ 1} is a sequence of

F-independent and F-identically distributed random variables. Then

E |X1|
p
< ∞, and EFX1 = 0 a.s. when 1 ≤ p < 2

if and only if

n−1/pSn → 0 in Lp.

Proof. We first prove the necessity. Let ε be a positive number, fixed for a
moment. Let us choose a positive number M that is enough large to satisfy
E |X1|

p
I (|X1| > M) < ε, and then set

(3.5) Yk = XkI (|Xk| ≤ M) , Zk = XkI (|Xk| > M) , k ≥ 1.

Thus, in the case where 0 < p < 1, one obtains

E |Sn|
p ≤ E

∣

∣

∣

∣

∣

n
∑

k=1

Yk

∣

∣

∣

∣

∣

p

+E

∣

∣

∣

∣

∣

n
∑

k=1

Zk

∣

∣

∣

∣

∣

p

≤ E

∣

∣

∣

∣

∣

n
∑

k=1

Yk

∣

∣

∣

∣

∣

p

+
n
∑

k=1

E |Zk|
p ≤ (nM)p + nε,

so that lim supn→∞ E
(

n−1 |Sn|
p)

≤ ε. This is true for any ε > 0, so it follows

that limn→∞ E
(

n−1 |Sn|
p)

= 0, namely n−1/pSn → 0 in Lp.
If 1 ≤ p < 2, then we get by Theorem 3.3 that

E |Sn|
p
≤ B∗

pE

(

n
∑

k=1

X2
k

)p/2

≤ 2p/2B∗
pE

(

n
∑

k=1

(

Y 2
k + Z2

k

)

)p/2

≤ 2p/2B∗
p



E

(

n
∑

k=1

Y 2
k

)p/2

+ E

(

n
∑

k=1

Z2
k

)p/2




≤ 2p/2B∗
p

[

(

nM2
)p/2

+ nE |Z1|
p
]

≤ 2p/2B∗
p

(

np/2Mp + nε
)

,

after which the desired conclusion follows as for the case 0 < p < 1.
Next we prove the sufficiency. Define Cp = 1 if 0 < p < 1 and 2p−1 if

1 ≤ p < 2, then the assumption n−1E |Sn|
p
→ 0 yields

1

n
E |X1|

p ≤
1

n
E |Sn − Sn−1|

p ≤ Cp

[

1

n
E |Sn|

p +
n− 1

n
·

1

n− 1
E |Sn−1|

p

]

→ 0,

which forces that E |X1|
p
< ∞.

For any ε > 0, we have

P
(

n−1/p |Sn| > ε
)

≤ ε−pn−1E |Sn|
p
→ 0,
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which means n−1/pSn → 0 in probability and hence n−1Sn → 0 in probability
when 1 ≤ p < 2. But Theorem 4.2 tells us that n−1Sn → EFX1 a.s., so that
EFX1 = 0 a.s. �

There exists a variant of Theorem 3.4, we still give its proof for the sake of
completeness.

Theorem 3.5. Let 0 < p < 2. Suppose that {Xn, n ≥ 1} is a sequence of

F-independent and F-identically distributed random variables. Then

EF |X1|
p
< ∞ , and EFX1 = 0 a.s. when 1 ≤ p < 2

if and only if

n−1EF |Sn|
p
→ 0 a.s.

Proof. We first prove the necessity. Let M be a positive number, fixed for a
moment, and then define Yk, Zk as in (3.5).

In case 0 < p < 1, one has

EF |Sn|
p
≤ EF

∣

∣

∣

∣

∣

n
∑

k=1

Yk

∣

∣

∣

∣

∣

p

+

n
∑

k=1

EF |Zk|
p
≤ (nM)

p
+ nEF [|X1|

p
I (|X1| > M)] ,

so that lim supn→∞ n−1EF |Sn|
p
≤ EF [|X1|

p
I (|X1| > M)]. Letting M ap-

proach infinity, we get the desired conclusion.
In case 1 ≤ p < 2, Theorem 3.3 applies and gives

EF |Sn|
p ≤ B∗

pE
F

(

n
∑

k=1

X2
k

)p/2

≤ 2p/2B∗
p

{

np/2Mp + nEF [|X1|
p
I (|X1| > M)]

}

.

Proceeding as in the last part of the proof in case 0 < p < 1, the desired
conclusion follows as 1/2 < p/2 < 1.

Next we prove the sufficiency. Define Cp as in the proof of Theorem 3.4,
then the assumption n−1EF |Sn|

p
→ 0 a.s. yields

1

n
EF |X1|

p ≤
1

n
EF |Sn − Sn−1|

p

≤ Cp

[

1

n
EF |Sn|

p
+

n− 1

n
·

1

n− 1
EF |Sn−1|

p

]

→ 0 a.s.,

which forces that EF |X1|
p
< ∞ a.s.

For any ε > 0, it is easy to see

PF
(

n−1/p |Sn| > ε
)

≤ ε−pn−1EF |Sn|
p
→ 0 a.s.,

which and the dominated convergence theorem yield P
(

n−1/p |Sn| > ε
)

→ 0,

namely n−1/pSn → 0 in probability. This means n−1Sn → 0 in probability
when 1 ≤ p < 2, after which the conclusionEFX1 = 0 a.s. follows as in the
last part of the proof of Theorem 3.4. �
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Theorem 3.5 together with Theorems 2.2 and 2.6 yields the following im-
plications, which are the conditional versions of the main results in Pyke and
Root [10] under the non-conditional case.

Theorem 3.6. Suppose that {Xn, n ≥ 1} is a sequence of F-independent and

F-identically distributed random variables. For each p ∈ (0, 2), the following

statements are equivalent:

(i) EF |X1|
p
< ∞ a.s. (assume EFX1 = 0 a.s. if 1 ≤ p < 2);

(ii) n−1/pSn →0 a.s.;
(iii) n−1EF |Sn|

p
→ 0 a.s.

Remark 3.7. Theorem 3.6 remains valid provided that {Xn, n ≥ 1} is a se-
quence of exchangeable random variables and F is taken as the tail σ-algebra
or the σ-algebra of permutable events of such a sequence. To the best of our
knowledge, this result has not been established previously in the literature.
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