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CONVERGENCE RATES FOR SEQUENCES OF

CONDITIONALLY INDEPENDENT AND CONDITIONALLY

IDENTICALLY DISTRIBUTED RANDOM VARIABLES

De-Mei Yuan

Abstract. The Marcinkiewicz-Zygmund strong law of large numbers for
conditionally independent and conditionally identically distributed ran-
dom variables is an existing, but merely qualitative result. In this paper,
for the more general cases where the conditional order of moment belongs
to (0,∞) instead of (0, 2), we derive results on convergence rates which
are quantitative ones in the sense that they tell us how fast convergence
is obtained. Furthermore, some conditional probability inequalities are
of independent interest.

1. Introduction

We will be working on a fixed probability space (Ω, A, P ) and let F be
a sub-σ-algebra of A. We should interpret F as information available, for
instance, F may be the collection {Ω, A, Ac, Ø} where A represents an event
of particular importance such as a massive disaster resulting from an earthquake
or a hurricane.

A finite sequence {Xk, 1 ≤ k ≤ n} of random variables is said to be condi-
tionally independent given F (F -independent, in short) if

P

{

n∩
k=1

(Xk ∈ Bk) |F
}

=
n
∏

k=1

P (Xk ∈ Bk |F ) a.s. for all Bk ∈ B,

where B is the Borel σ-algebra in R. An infinite sequence {Xn, n ≥ 1} of
random variables is said to be F -independent if every finite subsequence is
F -independent.
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Of course, F -independence reduces to unconditional or ordinary indepen-
dence when F = {Ω, Ø}, but independence of random variables neither implies
nor is implied by F -independence.

We next recall the concept of conditionally identical distributiveness. A pair
of random variablesX and Y are said to be conditionally identically distributed
given F (F -identically distributed, in short) if

P (X ∈ B |F ) = P (Y ∈ B |F ) a.s. for all B ∈ B.
A collection of random variables is said to be F -identically distributed if every
pair of random variables in the collection is F -identically distributed.

Just as in the case of conditional independence, F -identical distributiveness
reduces to ordinary identical distributiveness when F = {Ω, Ø}. It should
be pointed out that conditionally identical distributiveness implies identical
distributiveness, but the converse implication need not always be true, such an
example can be found in [21].

An important example of conditionally independent and conditionally iden-
tically distributed sequences of random variables is the so-called exchangeable
random variables. Let {Xn, n ≥ 1} be such a sequence, that is, the joint distri-
bution of (X1, X2, . . . , Xn) is the same as that of (Xπ(1), Xπ(2), . . . , Xπ(n)) for
each n ≥ 1 and any permutation π of (1, 2, . . . , n). By de Finetti’s theorem,
{Xn} is conditionally independent and conditionally identically distributed
given either its tail σ-algebra or its σ-algebra of permutable events, c.f. Theo-
rem 7.3.2 of Chow and Teicher [3].

The statistical perspective of conditional independence and conditionally
identical distribution is that of a Bayesian. A problem begins with a param-
eter θ with its prior probability distribution that exists only in mind of the
investigator. The statistical model that is most commonly in use is that of a
sequence {Xn, n ≥ 1} of observable random variables that is independent and
identically distributed for each given value of θ. As such, {Xn, n ≥ 1} is F -
independent and F -identically distributed but neither necessarily independent
nor necessarily identically distributed, where F = σ (θ).

Let {Xn, n ≥ 1} be a sequence of F -independent and F -identically dis-
tributed random variables. As usual, let Sn =

∑n

k=1 Xk, n ≥ 1, denote their
partial sums. Majerek et al. [11] proved that

lim
n→∞

n−1Sn = Y a.s.

if and only if EFX = Y a.s., which is a conditional version of the Kolmogorov
strong law of large numbers.

The further derivations are conditional versions of generalized Kolmogorov’s
inequality and Hájek-Rényi’s inequality due to Prakasa Rao [13], and condi-
tional versions of Hoeffding’s identity and Fubini’s theorem due to Roussas
[14].

Hence we are just wondering which results on independent and identically
distributed random variables have analogous ones in a conditional setting? As
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pointed out by Prakasa Rao [13], one does have to derive results under condi-
tioning if there is a need even though the results and proofs of such results may
be analogous to those under the non-conditioning setup. This motivates our
original interest in investigating conditionally independent and conditionally
identically distributed random variables.

Starting from the conditional independence given a sub-σ-algebra F , the
past a decade has witnessed the active development of a rich probability the-
ory of conditional dependence and many important theoretical results have
been obtained. See, for instance, Christofides and Hadjikyriakou [4] for condi-
tional demimartingale, Liu and Prakasa Rao [9] for conditional Borel-Cantelli
lemma, Ordóñez Cabrera et al. [12] for conditionally negatively quadrant de-
pendence, Wang and Wang [16] for conditional demimartingale and conditional
N-demimartingale, Yuan and Xie [22] for conditionally linearly negatively quad-
rant dependence, Yuan and Lei [17] for conditional strong mixing. These
achievements also stimulate us to study conditionally independent and con-
ditionally identically distributed random variables.

In Yuan and Li [20], they established the Marcinkiewicz-Zygmund strong
law of large numbers for conditionally independent and conditionally identically
distributed random variables, but it is merely a qualitative result. In this paper,
for the more general cases where the order of conditional moment belongs to
(0,∞) instead of (0, 2), we derive quantitative results in the sense that they tell
us how fast convergence is obtained, which link integrability of the summands
to convergence rates in strong laws of large numbers. The main result is given
in Section 2, a number of conditional inequalities of independent interest are
prepared in Section 3, and the proof of main result is put in Section 4.

Following Prakasa Rao [13] for the sake of convenience we will use the nota-
tion PF (A) to denote P (A |F ) and EFX to denote E (X |F ). Furthermore,
a ∨ b = max{a, b}.

2. Main results

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed
random variables with mean zero and put Sn =

∑n
k=1 Xk. Hsu and Robbins

[8] prove that if EX2
1 < ∞, then

∞
∑

n=1

P (|Sn| ≥ nε) < ∞ for all ε > 0.

Somewhat latter, Erdös [5, 6] proved the converse. In addition to being a result
on a kind convergence, Hsu-Robbins-Erdös result can be viewed as a result on
the rate of convergence in the law of large numbers. Namely, not only does
the term P (|Sn| ≥ nε) have to tend to zero, the sum of them has to converge,
what is a little more.

The Hsu-Robbins-Erdös result was later extended in a series of papers which
culminated in the paper by Baum and Katz [1], bridging the integrability of
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summands and the rate of convergence in the Marcinkiewicz-Zygmund strong
law of large numbers, and showing that if 0 < p < 2, r ≥ p, then

E |X1|r < ∞ where EX1 = 0 whenever r ≥ 1

is equivalent to
∞
∑

n=1

nr/p−2P
(

|Sn| ≥ n1/pε
)

< ∞ for all ε > 0,

and also equivalent to
∞
∑

n=1

nr/p−2P

(

max
1≤k≤n

|Sk| ≥ n1/pε

)

< ∞ for all ε > 0,

the last equivalence is due to Chow [2].
Our goal is to extend the equivalences above to the case where {Xn, n ≥ 1}

is a sequence of conditionally independent and conditionally identically dis-
tributed random variables.

Theorem 2.1. Let 0 < p < 2 and r ≥ p. Suppose that {Xn, n ≥ 1} is a

sequence of F-independent and F-identically distributed random variables. If

there exists some real number s greater than 2 ∨ 2(r−p)
r(2−p) such that

(2.1) E
(

EF |X1|r
)s

< ∞, EFX1 = 0 a.s. whenever r ≥ 1,

then

(2.2)

∞
∑

n=1

nr/p−2P
(

|Sn| ≥ εn1/p
)

< ∞ for all ε > 0

and

(2.3)

∞
∑

n=1

nr/p−2P

(

max
1≤k≤n

|Sk| ≥ εn1/p

)

< ∞ for all ε > 0.

Conversely, if one of (2.2) and (2.3) is finite for some ε > 0, then

(2.4) E |X1|r < ∞, EFX1 = 0 a.s. whenever r ≥ 1.

Remark 2.2. If F = {Ø,Ω}, then (2.1) is equivalent to

E |X1|r < ∞, EX1 = 0 whenever r ≥ 1,

so Theorem 2.1 is an extension to the classical non-conditional setting. More-
over, if F is not the trivial σ-algebra, then E

(

EF |X1|r
)s

< ∞ is stronger than

E |X1|r < ∞ and EFX1 = 0 a.s. is stronger than EX1 = 0.

Remark 2.3. Theorem 2.1 remains valid provided that {Xn, n ≥ 1} is a se-
quence of exchangeable random variables and F is taken as its tail σ-algebra
or σ-algebra of permutable events. This result has, to the best of our knowl-
edge, never been established in the literature before.
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3. Several conditional probability inequalities

In order to prove Theorem 2.1, we establish several conditional inequalities in
this section. Since these inequalities are of independent interest, we formulate
them as propositions.

A random variable X is said to be F -symmetric if X and −X are F -
identically distributed. In this terminology we obtain EF [XI (|X | ≤ c)] = 0
for any c > 0 and further establish a truncated inequality for F -symmetric
random variables as follows.

Proposition 3.1. Let X1, X2, . . . , Xn be F-independent random variables, let

b1, b2, . . . , bn be positive reals, and define

Yk = XkI (|Xk| < bk) , k = 1, 2, . . . , n.

If each Xk is F-symmetry, then, for any ε > 0,

(3.1) P

(∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

≥ ε

)

≤ ε−2
n
∑

k=1

EY 2
k +

n
∑

k=1

P (|Xk| ≥ bk).

Proof. Assertion (3.1) follows upon observing that

P

(∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

≥ ε

)

= P

{(∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

≥ ε

)

∩
[

n
∩

k=1
(|Xk| < bk)

]

}

+ P

{(
∣

∣

∣

∣

∣

n
∑

k=1

Xk

∣

∣

∣

∣

∣

≥ ε

)

∩
[

n∪
k=1

(|Xk| ≥ bk)

]

}

≤ P

(∣

∣

∣

∣

∣

n
∑

k=1

Yk

∣

∣

∣

∣

∣

≥ ε

)

+ P

(

n∪
k=1

(|Xk| > bk)

)

≤ ε−2E

(

n
∑

k=1

Yk

)2

+

n
∑

k=1

P (|Xk| ≥ bk)

= ε−2
n
∑

k=1

EY 2
k +

n
∑

k=1

P (|Xk| ≥ bk),

the last equality holding since E (YiYj) = E
[

EF (YiYj)
]

= E
[

EFYi · EFYj

]

=
0 for i 6= j. �

Before continuing with our conditional probability inequalities we pause for
recalling two concepts. The first concept is conditional median. Let ξ be a
random variable, its conditional median with respect to F , is defined as an
F -measurable random variable, say MedFξ, such that

PF (ξ ≥ MedFξ) ≥
1

2
≤ PF (ξ ≤ MedFξ) a.s.

This concept was introduced by Tomkins [15], which refined the original defi-
nition proposed by Loève [10] and became slightly tougher. Note that MedFξ
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is just a usual median of ξ if F = {Ω, Ø}, say Medξ, which is, of course, not
necessarily unique; it is easy to concoct examples to show that this is also the
case when F is not trivial.

The second concept is conditional symmetrization. Let X and X ′ be F -
independent and F -identically distributed random variables, thenXs

F
= X−X ′

is F -symmetric in view of Corollary 3.9 of Yuan and Lei [18] and we call Xs
F

the F -symmetrization of X .
With the help of the two concepts mentioned above we now present condi-

tional versions of the weak symmetrization inequalities that relate tail proba-
bilities of a random variable to tail probabilities of its F -symmetrization.

Proposition 3.2. Let X be a random variable. Then, for any real x and any

F-measurable random variable η,

1

2
P (X −MedFX ≥ x) ≤ P (Xs

F ≥ x)

and

1

2
P (|X −MedFX| ≥ x) ≤ P (|Xs

F | ≥ x) ≤ 2P
(

|X − η| ≥ x

2

)

.

In particular,

1

2
P (|X −MedFX| ≥ x) ≤ P (|Xs

F | ≥ x) ≤ 2P
(

|X −MedFX| ≥ x

2

)

.

Proof. Since X and X ′ are F -identically distributed, MedFX is also a condi-
tional median of X ′ with respect to F . In addition, Lemma 2.4 of Yuan et al.
[21] shows that X −MedFX and X ′ −MedFX are F -independent. Thus

P (Xs
F ≥ x) = P {(X −MedFX)− (X ′ −MedFX) ≥ x}

≥ P (X −MedFX ≥ x,X ′ −MedFX ≤ 0)

= E
[

PF (X −MedFX ≥ x)PF (X ′ −MedFX ≤ 0)
]

≥ 1

2
E
[

PF (X −MedFX ≥ x)
]

=
1

2
P (X −MedFX ≥ x) .

This justifies the first inequality, which, together with the inequality obtained
by changing X into −X , proves the left-most inequality in the second one. The
right-most inequality follows from the observation

P (|Xs
F | ≥ x) = P {|(X − η)− (X ′ − η)| ≥ x}

≤ P
(

|X − η| ≥ x

2

)

+ P
(

|X ′ − η| ≥ x

2

)

= 2P
(

|X − η| ≥ x

2

)

,

where P (|X − η| ≥ x/2) = P (|X ′ − η| ≥ x/2) since X − η and X ′ − η are
F -identically distributed in view of Theorem 3.7 of [18]. �

Similarly, we can obtain the conditional versions of the strong symmetriza-
tion inequalities.
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Proposition 3.3. Let X1, X2, . . . , Xn be random variables. Then, for any real

x and any F-measurable random variables η1, η2, . . . , ηn,

(3.2)
1

2
P

{

max
1≤k≤n

(Xk −MedFXk) ≥ x

}

≤ P

(

max
1≤k≤n

Xs
k,F ≥ x

)

and

1

2
P

(

max
1≤k≤n

|Xk −MedFXk| ≥ x

)

≤ 2P

(

max
1≤k≤n

∣

∣Xs
k,F

∣

∣ ≥ x

)

(3.3)

≤ 4P

(

max
1≤k≤n

|Xk − ηk| ≥
x

2

)

.

In particular,

1

2
P

(

max
1≤k≤n

|Xk −MedFXk| ≥ x

)

≤ 2P

(

max
1≤k≤n

∣

∣Xs
k,F

∣

∣ ≥ x

)

≤ 4P

(

max
1≤k≤n

|Xk −MedFXk| ≥
x

2

)

.

Proof. Let (X ′
1, X

′
2, . . . , X

′
n) be an F -independent copy of (X1, X2, . . . , Xn),

namely, let (X ′
1, X

′
2, . . . , X

′
n) and (X1, X2, . . . , Xn) be F -independent and F -

identically distributed. Put

A1 = {X1 −MedFX1 ≥ x} ,

Ak =

{

max
1≤j≤k−1

(Xj −MedFXj) < x, Xk −MedFXk ≥ x

}

, k = 2, . . . , n,

Bk = {X ′
k −MedFXk ≤ 0} , k = 1, 2, . . . , n

and
Ck = {Xs

k ≥ x} , k = 1, 2, . . . , n.

Since the Ak are pairwise disjoint with Ak ∩Bk ⊂ Ck,

P

(

n∪
k=1

Ck

)

≥ P

{

n∪
k=1

(Ak ∩Bk)

}

=
n
∑

k=1

P (Ak ∩Bk)

=

n
∑

k=1

E
[

PF (Ak)P
F (Bk)

]

≥ 1

2

n
∑

k=1

E
[

PF (Ak)
]

=
1

2

n
∑

k=1

P (Ak) =
1

2
P

(

n∪
k=1

Ak

)

,

this completes the proof of (3.2). By changing Xk into −Xk, we obtain

1

2
P

{

max
1≤k≤n

[− (Xk −MedFXk)] ≥ x

}

≤ P

{

max
1≤k≤n

(

−Xs
k,F

)

≥ x

}

,

which, together with (3.2), yields

1

2
P

{

max
1≤k≤n

|Xk −MedFXk| ≥ x

}
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≤ 1

2
P

{

max
1≤k≤n

(Xk −MedFXk) ≥ x

}

+
1

2
P

{

max
1≤k≤n

[− (Xk −MedFXk)] ≥ x

}

≤ P

{

max
1≤k≤n

Xs
k,F ≥ x

}

+ P

{

max
1≤k≤n

(

−Xs
k,F

)

≥ x

}

≤ 2P

{

max
1≤k≤n

∣

∣Xs
k,F

∣

∣ ≥ x

}

,

which is precisely the left-most inequality of (3.3). The proof of the right-most
inequality is similar to that in the last part of Proposition 3.2. �

The forthcoming inequalities extend the Lévy inequalities (see Theorem 3.7.1
of Gut [7]) to conditional case.

Proposition 3.4. Let X1, X2, . . . , Xn be F-independent random variables.

Then, for any real x,

(3.4) P

{

max
1≤k≤n

[Sk −MedF (Sk − Sn)] ≥ x

}

≤ 2P (Sn ≥ x)

and

(3.5) P

{

max
1≤k≤n

|Sk −MedF (Sk − Sn)| ≥ x

}

≤ 2P (|Sn| ≥ x) .

If, in addition, each Xk is F-symmetric, then

P

(

max
1≤k≤n

Sk ≥ x

)

≤ 2P (Sn ≥ x)

and

(3.6) P

(

max
1≤k≤n

|Sk| ≥ x

)

≤ 2P (|Sn| ≥ x) .

Proof. Set Mk = max1≤j≤k [Sj −MedF (Sj − Sn)] for k = 1, 2, . . . , n. Write

A1 = {S1 −MedF (S1 − Sn) ≥ x} ,
Ak = {Mk−1 < x, Sk −MedF (Sk − Sn) ≥ x} , k = 2, . . . , n

and
Bk = {Sn − Sk −MedF (Sn − Sk) ≥ 0} , k = 1, 2, . . . , n.

Clearly the Ak are pairwise disjoint with ∪n
k=1Ak = {Mn ≥ x}, PF (Bk) ≥ 1/2

and
{Sn ≥ x} ⊃ n∪

k=1
(Ak ∩Bk)

upon noticing that MedF (Sk − Sn) = −MedF (Sn − Sk). Also, Lemma 2.4 of
Yuan et al. [21] shows that Ak and Bk are F -independent. It follows that

P (Sn ≥ x) ≥
n
∑

k=1

P (Ak ∩Bk) =

n
∑

k=1

E
[

PF (Ak)P
F (Bk)

]
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≥ 1

2

n
∑

k=1

P (Ak) =
1

2
P (Mn ≥ x) ,

which is precisely (3.4). To prove (3.5), we replace Xk by −Xk, 1 ≤ k ≤ n, in
(3.4) to get

P {−Sn ≥ x} ≥ 1

2
P

{

max
1≤k≤n

[

−
(

Sk −MedF (Sk − Sn)
)]

≥ x

}

.

Combining the last inequality with (3.4) leads to

P {|Sn| ≥ x} = P {Sn ≥ x}+ P {−Sn ≥ x}

≥ 1

2
P

{

max
1≤k≤n

|Sk −MedF (Sk − Sn)| ≥ x

}

,

which is just the desired conclusion. �

Remark 3.5. A nice by-product of the above proof is that all results in Theorem
3.4 also remain true in the sense of almost sure by replacing P whenever it
occurs by PF . For example, (3.6) can turn into

(3.7) PF

(

max
1≤k≤n

|Sk| ≥ x

)

≤ 2PF (|Sn| ≥ x) a.s.,

which will be used in the proof of Proposition 3.6.

Finally, we extend the Kahane-Hoffmann-Jørgensen inequalities (see Theo-
rem 3.7.5 of Gut [7]) to conditional case.

Proposition 3.6. Let X1, X2, . . . , Xn be F-independent and F-symmetric ran-

dom variables.

(i) For any x, y > 0,

P (|Sn| ≥ 2x+ y) ≤ P

(

max
1≤k≤n

|Xk| ≥ y

)

+ 4E
[

PF (|Sn| ≥ x)
]2

(3.8)

≤
n
∑

k=1

P (|Xk| ≥ y) + 4E
[

PF (|Sn| ≥ x)
]2
.

(ii) For any integer j ≥ 1 and any x > 0,

(3.9) P
(

|Sn| ≥ 3jx
)

≤ CjP

(

max
1≤k≤n

|Xk| ≥ y

)

+DjE
[

PF (|Sn| ≥ x)
]2j

,

where Cj and Dj are numerical constants depending only on j. If, in addition,

X1, X2, . . . , Xn are F-identically distributed, then

P
(

|Sn| ≥ 3jx
)

≤ CjnP (|X1| ≥ y) +DjE
[

PF (|Sn| ≥ x)
]2j

.

Proof. Set Yn = max1≤k≤n |Xk|,

A1 = {|S1| ≥ x} , Ak =

{

max
1≤j≤k−1

|Sj| < x, |Sk| ≥ x

}

, k = 2, . . . , n.
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Then the Ak are pairwise disjoint with

{|Sn| ≥ 2x+ y} ⊂ n∪
k=1

Ak =

{

max
1≤k≤n

|Sn| ≥ x

}

.

Consequently,

P (|Sn| ≥ 2x+ y) = P

{

(|Sn| ≥ 2x+ y) ∩
(

n
∪

k=1
Ak

)}

(3.10)

=

n
∑

k=1

P {(|Sn| ≥ 2x+ y) ∩ Ak}.

Since by the triangular inequality,

|Sn| ≤ |Sk−1|+ |Xk|+ |Sn − Sk| for 1 ≤ k ≤ n,

it follows that, on the set {|Sn| ≥ 2x+ y} ∩ Ak,

|Sn − Sk| ≥ |Sn| − |Sk−1| − |Xk| ≥ 2x+ y − x− Yn = x+ y − Yn,

so that, noticing that Sn − Sk and Ak are F -independent by Lemma 2.4 of
Yuan et al. [21],

P {(|Sn| ≥ 2x+ y) ∩ Ak} ≤ P {(|Sn − Sk| ≥ x+ y − Yn) ∩ Ak}
= P {(|Sn − Sk| ≥ x+ y − Yn) ∩ Ak ∩ (Yn ≥ y)}

+P {(|Sn − Sk| ≥ x+ y − Yn) ∩ Ak ∩ (Yn < y)}
≤ P {Ak ∩ (Yn ≥ y)}+ P {(|Sn − Sk| ≥ x) ∩ Ak}
= P {Ak ∩ (Yn ≥ y)}+ E

[

PF (|Sn − Sk| ≥ x)PF (Ak)
]

≤ P {Ak ∩ (Yn ≥ y)}+ 2E
[

PF (|Sn| ≥ x)PF (Ak)
]

,

the last inequality being a consequence of (3.7). Joining this with (3.10) finally
yields

P (|Sn| ≥ 2x+ y)

≤
n
∑

k=1

P {Ak ∩ (Yn ≥ y)}+ 2

n
∑

k=1

E
[

PF (|Sn| ≥ x)PF (Ak)
]

= P

{(

n
∪

k=1
Ak

)

∩ (Yn ≥ y)

}

+ 2E

[

PF (|Sn| ≥ x)PF

(

n
∪

k=1
Ak

)]

≤ P (Yn ≥ y) + 4E
[

PF (|Sn| ≥ x)
]2

,

where we exploited (3.7) in the final step.
(ii) We need only to prove the following almost sure version of (3.9):

(3.11) PF
(

|Sn| ≥ 3jx
)

≤CjP
F

(

max
1≤k≤n

|Xk| ≥ y

)

+Dj

[

PF (|Sn| ≥ x)
]2j

a.s.,

because once this relation has been verified one can obtain (3.9) by taking
expectation. To prove (3.11), we notice that (3.8) is also true in the sense of
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almost sure by replacing P by PF , namely

(3.12) PF (|Sn| ≥ 2x+ y) ≤ PF

(

max
1≤k≤n

|Xk| ≥ y

)

+ 4
[

PF (|Sn| ≥ x)
]2

a.s.

Now we prove (3.11) by induction. For j = 1, note that (3.11) is covered
by (3.12) with y = x. Next assume that (3.11) holds for j − 1 (j ≥ 2), then,

exploiting the fact that (a+ b)
2 ≤ 2a2+2b2 for positive numbers a, b, it follows

from the induction hypothesis that

PF
(

|Sn| ≥ 3jx
)

≤ PF
(

Yn ≥ 3j−1x
)

+ 4
[

PF
(

|Sn| ≥ 3j−1x
)]2

≤ PF
(

Yn ≥ 3j−1x
)

+ 4

{

Cj−1P
F (Yn ≥ x) +Dj−1

[

PF (|Sn| ≥ x)
]2j−1

}2

≤ PF
(

Yn ≥ 3j−1x
)

+ 8C2
j−1

[

PF (Yn ≥ x)
]2

+ 8D2
j−1

[

PF (|Sn| ≥ x)
]2j

≤
(

1 + 8C2
j−1

)

PF (Yn ≥ x) + 8D2
j−1

[

PF (|Sn| ≥ x)
]2j

a.s.

This proves (3.11) with Cj = 1 + 8C2
j−1 and Dj = 8D2

j−1. �

4. Proof of Theorem 2.1

The approach of this proof is quite different from that of Theorem 6.12.1
in Gut [7], but we are obliged to repeat some of arguments used there for
completeness.

We first consider the proof of the first part.
(i) {Xn} is an F -symmetric sequence.
We distinguish four cases to verify (2.2).
(a) For r = p, set, for n ≥ 1,

Yn,k = XkI
(

|Xk| < n1/r
)

, 1 ≤ k ≤ n

and

S′
n =

n
∑

k=1

Yn,k.

Proposition 3.1, and the fact that conditionally identical distribution implies
identical distribution, then yield

P
(

|Sn| ≥ εn1/r
)

≤ ε−2n1−2/rEY 2
n,1 + nP

(

|X1| ≥ n1/r
)

,

so that
∞
∑

n=1

nr/p−2PF

(

|Sn| ≥ εn1/p
)

=

∞
∑

n=1

n−1PF

(

|Sn| ≥ εn1/p
)

≤ ε−2
∞
∑

n=1

n−2/rEY 2
n,1 +

∞
∑

n=1

P
(

|X1| ≥ n1/r
)

=: ε−2I1 + I2.
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It is well known that E |X1|r < ∞ guarantees I2 < ∞. As for I1, by changing
the order of expectation and summation and the fact that 0 < r < 2,

I1 ≤
∞
∑

n=1

n−2/rE
[

X2
1I
(

|X1| ≤ n1/r
)]

= E

[

X2
1

∞
∑

n=1

n−2/rI
(

|X1| ≤ n1/r
)

]

= E



X2
1

∑

n: n≥|X1|
r
∨1

n−2/r





= E

[

X2
1I
(

0 ≤ |X1| < 21/r
)

∞
∑

n=1

n−2/r

]

+E



X2
1I
(

|X1| ≥ 21/r
)

∑

n: n≥|X1|
r

n−2/r





≤ 22/r
∞
∑

n=1

n−2/r +
22/r−1

2/r − 1
E
[

X2
1 (|X1|r)−2/r+1

]

= 22/r
∞
∑

n=1

n−2/r +
22/r−1r

2− r
E |X1|r < ∞.

(b) For r > p, r ≤ 1, applying, successively, Proposition 3.6 (i), the condi-
tional Markov inequality, and the cr-inequality yields

∞
∑

n=1

nr/p−2P
(

|Sn| ≥ εn1/p
)

≤
∞
∑

n=1

nr/p−1P
(

|X1| ≥ n1/pε
/

3
)

+ 4
∞
∑

n=1

nr/p−2E

[

EF |Sn|r
(

n1/pε
/

3
)r

]2

≤
∞
∑

n=1

nr/p−1P
(

|X1| ≥ n1/pε
/

3
)

+ 4

∞
∑

n=1

nr/p−2E

[

nEF |X1|r
(

n1/pε
/

3
)r

]2

=

∞
∑

n=1

nr/p−1P
(

|X1| ≥ n1/pε
/

3
)

+ 4× 9rε−2rE
(

EF |X1|r
)2

∞
∑

n=1

n−r/p.

The second term is finite because E
[

EF |X1|r
]2

< ∞ and
∑∞

n=1 n
−r/p < ∞

implied by r > p. With regard to the first term, since E (|X1|p)r/p = E |X1|r <
∞, it follows that from Theorem 2.12.1(iv) in Gut [7]

(4.1)

∞
∑

n=1

nr/p−1P
(

|X1| ≥ n1/pε
/

3
)

=

∞
∑

n=1

nr/p−1P
(

∣

∣3ε−1X1

∣

∣

p ≥ n
)

< ∞.

(c) For r > p, 1 < r < 2, the same procedure as in (b) with the cr-inequality
replaced by Theorem 3.3 in Yuan and Li [20] yields the desired result.



CONVERGENCE RATES FOR SEQUENCES OF RANDOM VARIABLES 1287

(d) For r ≥ 2, let j > 1 to be specified later. We use Proposition 3.6(ii) and
Theorem 3.3 in [20] to get

∞
∑

n=1

nr/p−2P
(

|Sn| ≥ εn1/p
)

=

∞
∑

n=1

nr/p−2P
(

|Sn| ≥ 3j3−jn1/pε
)

≤ Cj

∞
∑

n=1

nr/p−1P
(

|X1| ≥ 3−jn1/pε
)

+Dj

∞
∑

n=1

nr/p−2E

[

EF |Sn|r
(

3−jn1/pε
)r

]2j

≤ Cj

∞
∑

n=1

nr/p−1PF

(

|X1| ≥ 3−jn1/pε
)

+Dj

∞
∑

n=1

nr/p−2E

[

B∗
rn

r/2EF |X1|r
(

3−jn1/pε
)r

]2j

= Cj

∞
∑

n=1

nr/p−1P
(

|X1| ≥ 3−jn1/pε
)

+Dj

(

B∗
r3

rjε−r
)2j

E
(

EF |X1|r
)2j

∞
∑

n=1

nβ ,

where B∗
r is a constant depending only on r and

β = rp−1 − 2 +
(

2−1r
)

2j − 2jrp−1 = rp−1 − 2 + 2j−1rp−1 (p− 2) .

Analogously to the proof of (4.1), one can show that the first sum is finite. The

second sum is also finite because β < −1 if taking j > log2
2(r−p)
r(2−p) .

Now we prove that (2.3) is true. In fact, (2.2) implies (2.3) according to the
fact that

P

(

max
1≤k≤n

|Sk| ≥ n1/pε

)

≤ 2P
(

|Sn| ≥ n1/pε
)

,

which is a straight-forward consequence of Proposition 3.4.
(ii) {Xn} is the original sequence.
Since E |Xs

1 |r ≤ (2 ∨ 2r)E |X1|r < ∞, relation (2.2) holds by what have just
now been proved for the F -symmetrized case, and therefore we have

∞
∑

n=1

nr/p−2P
(

|Sn −MedFSn| ≥ n1/pε
)

< ∞ for all ε > 0

according to Proposition 3.2, which implies (2.2) if

∞
∑

n=1

nr/p−2P
(

|MedFSn| ≥ n1/pε
)

< ∞ for all ε > 0.
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To prove this assertion, we first note that

PF

{

|Sn| ≥ 21/r
(

EF |Sn|r
)1/r

}

≤ EF |Sn|r
[

21/r (EF |Sn|r)1/r
]r =

1

2
,

so that, by the definition of a conditional median,

|MedFSk| ≤ 21/r
(

EF |Sk|r
)1/r

a.s.,

and thus, we need only to prove that
∞
∑

n=1

nr/p−2P
{

21/r
(

EF |Sn|r
)1/r ≥ n1/pε

}

< ∞ for all ε > 0

or, equivalently,
∞
∑

n=1

nr/p−2P
(

EF |Sn|r ≥ nr/pε
)

< ∞ for all ε > 0.

(a) For 0 < r < 1, we have

P
(

EF |Sn|r ≥ nr/pε
)

≤ E
(

EF |Sn|r
)2

n2r/pε2
≤ n2rE

(

EF |X1|r
)2

n2r/pε2
,

which indicates that
∞
∑

n=1

nr/p−2P
(

EF |Sn|r ≥ nr/pε
)

≤ ε−2E
(

EF |X1|r
)2

∞
∑

n=1

n−r/p−2+2r,

the last series converges because −r/p− 2 + 2r ≤ −3 + 2r < −1.
(b) For 1 ≤ r < 2, we have

P
(

EF |Sn|r ≥ nr/pε
)

≤ E |Sn|r

nr/pε
≤ nr/2E |X1|r

nr/pε

by Theorem 3.3 in [20], which indicates that

∞
∑

n=1

nr/p−2P
(

EF |Sn|r ≥ nr/pε
)

≤ ε−1E |X1|r
∞
∑

n=1

n−2+r/2,

the last series converges because −2 + r/2 < −1.
(c) For r ≥ 2, we have

P
(

EF |Sn|r ≥ nr/pε
)

≤ E
(

EF |Sn|r
)s

nsr/pεs
≤ nsr/2E

(

EF |X1|r
)s

nsr/pεs

again by Theorem 3.3 in [20], which indicates that

∞
∑

n=1

nr/p−2P
(

EF |Sn|r ≥ nr/pε
)

≤ ε−sE
(

EF |X1|r
)s

∞
∑

n=1

nr/p−2+sr/2−sr/p,

the last series converges because r/p − 2 + sr/2 − sr/p < −1 by recalling
s > 2 (r − p)/r (2− p).
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Finally, we point out that the procedure for (2.3) is the same, however, with
Proposition 3.3 instead of Proposition 3.2.

For the second part of the theorem, since (2.3) imply (2.2), we only need to
prove (2.2) ⇒(2.4). Once again we begin with the F -symmetric case. In view
of Proposition 3.4, we have

(4.2)
∞
∑

n=1

nr/p−2P

(

max
1≤k≤n

|Sk| ≥ n1/pε

)

< ∞ for some ε > 0.

Since |Xk| ≤ |Sk| + |Sk−1|, it follows that max1≤k≤n |Xk| ≤ 2max1≤k≤n |Sk|,
and hence (4.2) implies

(4.3)

∞
∑

n=1

nr/p−2P

(

max
1≤k≤n

|Xk| ≥ n1/pε/2

)

< ∞ for some ε > 0,

from which, we assert

(4.4) P

(

max
1≤k≤n

|Xk| ≥ n1/p21/pε/2

)

→ 0 for some ε > 0 as n → ∞.

In fact, the result is obvious if r/p ≥ 2, so we assume that 1 ≤ r/p < 2. In
view of (4.3),

∞ >

∞
∑

n=1

nr/p−2P

(

max
1≤k≤n

|Xk| ≥ n1/pε/2

)

≥
∞
∑

j=0

P

(

max
1≤k≤2j

|Xk| ≥ 2(j+1)/pε/2

) 2j+1
−1

∑

n=2j

nr/p−2

≥
∞
∑

j=0

P

(

max
1≤k≤2j

|Xk| ≥ 2(j+1)/pε/2

)

2(j+1)(r/p−2)2j

= 2r/p−2
∞
∑

j=0

2(r/p−1)jP

(

max
1≤k≤2j

|Xk| ≥ 2(j+1)/pε/2

)

,

which entails since r/p− 1 ≥ 0 that

(4.5) P

(

max
1≤k≤n

|Xk| ≥ 2(j+1)/pε/2

)

→ 0 for some ε > 0 as n → ∞.

For each n ≥ 1, let jn ≥ 0 be such that 2jn ≤ n < 2jn+1, that is, jn =
[log2 n], where log2 denotes the logarithm to the base 2 and [x] denotes the
largest integer not exceeding x. By (4.5),

P

(

max
1≤k≤n

|Xk| ≥ n1/p21/pε/2

)

≤ P

(

max
1≤k≤2jn+1

|Xk| ≥ 2(jn+1)/pε/2

)

→ 0 as n → 0,

proving (4.4).
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From (4.4), we further assert that

(4.6) 6P

(

max
1≤k≤n

|Xk| ≥ n1/p21/pε/2

)

≥ nP
(

|X1| ≥ n1/p21/pε/2
)

for sufficient large n. To prove this, set ε̃ := 21/pε/2. Since

P

(

max
1≤k≤n

|Xk| ≥ n1/pε̃

)

=

n
∑

k=1

P

(

|Xk| ≥ n1/pε̃, max
1≤j≤k−1

|Xj | < n1/pε̃

)

,

we deduce that

(4.7) nP
(

|X1| ≥ n1/pε̃
)

=

n
∑

k=1

P
(

|Xk| ≥ n1/pε̃
)

= P

(

max
1≤k≤n

|Xk| ≥ n1/pε̃

)

+

n
∑

k=1

P

(

|Xk| ≥ n1/pε̃, max
1≤j≤k−1

|Xj | ≥ n1/pε̃

)

.

But

(4.8)

n
∑

k=1

P

(

|Xk| ≥ n1/pε̃, max
1≤j≤k−1

|Xj| ≥ n1/pε̃

)

≤
n
∑

k=1

EI
(

|Xk| ≥ n1/pε̃
)

I

(

max
1≤j≤n

|Xj| ≥ n1/pε̃

)

= E
n
∑

k=1

[

I
(

|Xk| ≥ n1/pε̃
)

− P
(

|Xk| ≥ n1/pε̃
)]

I

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

+nP
(

|X1| ≥ n1/pε̃
)

P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

=: I3 + nP
(

|X1| ≥ n1/pε̃
)

P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

.

By applying the Cauchy-Schwarz inequality and Theorem 2.1 of Yuan and Li
[19], we get

(4.9) |I3|

≤

√

√

√

√E

{

n
∑

k=1

[

I
(

|Xk| ≥ n1/pε̃
)

− P
(

|Xk| ≥ n1/pε̃
)]

}2

P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

≤

√

√

√

√E
n
∑

k=1

EF
[

I
(

|Xk| ≥ n1/pε̃
)

− P
(

|Xk| ≥ n1/pε̃
)]2

P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

≤

√

√

√

√

n
∑

k=1

P
(

|Xk| ≥ n1/pε̃
)

P

(

max
1≤j≤n

|Xj| ≥ n1/pε̃

)
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≤ 1

2
nP
(

|X1| ≥ n1/pε̃
)

+
1

2
P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

.

From (4.7)-(4.9), we obtain

nP
(

|X1| ≥ n1/pε̃
)

≤ 3P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

+ 2nP
(

|X1| ≥ n1/pε̃
)

P

(

max
1≤j≤n

|Xj | ≥ n1/pε̃

)

,

which in conjunction with (4.4) yields (4.6).
Inserting (4.6) into (4.3), we obtain

∞
∑

n=1

nr/p−1P
(

|X1| ≥ n1/p21/pε/2
)

< ∞ for some ε > 0,

which is equivalent to E
(

∣

∣21−1/pX1

/

ε
∣

∣

p
)r/p

< ∞, and therefore to E |X1|r <
∞.

Now, suppose that (2.2) holds for some ε > 0 in the general case. Then it also

does so for the F -symmetricized variables (with ε/2). Hence E
∣

∣Xs
1,F

∣

∣

r
< ∞,

from which we conclude that E |X1|r < ∞. Furthermore, if r ≥ 1, then the
conditional mean must be almost surely finite, so that the conditional strong
law of large numbers (Theorem 4.2 of Majerek et al. [11]) holds, which, in turn,
forces the conditional mean to equal 0 almost surely.
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