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AN EXTENSION OF RANDOM SUMMATIONS OF

INDEPENDENT AND IDENTICALLY DISTRIBUTED

RANDOM VARIABLES

Le Truong Giang and Tran Loc Hung

Abstract. The main goal of this paper is to study an extension of ran-
dom summations of independent and identically distributed random vari-

ables when the number of summands in random summation is a partial

sum of n independent, identically distributed, non-negative integer-valued
random variables. Some characterizations of random summations are con-

sidered. The central limit theorems and weak law of large numbers for
extended random summations are established. Some weak limit theorems

related to geometric random sums, binomial random sums and negative-

binomial random sums are also investigated as asymptotic behaviors of
extended random summations.

1. Introduction

Let X,X1, X2, . . . be a sequence of independent, identically distributed
(i.i.d.) random variables, having common distribution FX , mean E(X) = µ,
and finite variance D(X) = σ2 < +∞. Suppose that Y, Y1, Y2, . . . , Yn are inde-
pendent, identically distributed, non-negative, integer-valued random variables,
with mean E(Y ) = α, and finite variance D(Y ) = τ2 < +∞. Additionally, sup-
pose that the random variables X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn are indepen-

dent. Set, for n ≥ 1, Nn := Y1+Y2+· · ·+Yn and define SNn :=
∑Nn
j=1Xj . Then,

the random summation SNn is a remarkable random summation because of the
number of summands in random summation is a partial sum of i.i.d. random
variables. It is obvious that when P (N1 = Y1) = 1, the random summation

will be returned to the classical random sum SY1
=
∑Y1

j=1Xj .

Since the appearance of the Robbin’s results in 1948 (see [21] for more de-
tails), the random summations have been investigated in the theory proba-
bility, statistics, stochastic processes and various related fields for quite some
time by Robbins (1948), Feller (1971), Gnhedenko (1972), Gnedenko and Ko-
rolev (1996), Renyi (1970), Korolev and Kruglov (1990), Gut (2005), Hung
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and Thanh (2010), Hung et al. (2008), Durrett (1977), Hu and Cheng (2012),
Chen and Shao (2007), Chen and Goldstein (2011), Omey and Vesilob (2015),
. . . (see [2–9,15,17,19–21], and the references therein).

Recently, a number of results related to the specific cases of random sum-
mations like geometric random sums, compound Poisson sums, binomial ran-
dom sums, negative–binomial random sums, etc. and their applications have
been investigated by many authors as Gnedenko (1971), Gnedenko and Ko-
rolev (1996), Kruglov and Korolev (1990), Kalashnikov (1997), Vellaisamy and
Chaudhuri (1996), Hung et al. (2008, 2010), Sunklodas (2009, 2014, 2015), . . . .
Results of this nature may be found in [7,10,11,13,17,22–25] and the references
given there.

It makes sense to consider an extension of random summation when Nn,
n ≥ 1, is being a partial sum of independent, identically distributed non-
negative integer-valued random variables. This extension comes from the actual
requirements, e.g. a negative-binomial random sum is an extension of geometric
random sum. Actually, suppose that Yj , j = 1, 2, . . . , n are n independent,
geometric distributed random variables with parameter p ∈ (0, 1). Then, the
sum SY1

= X1+X2+· · ·+XY1
is said to be a geometric random sum. Obviously,

the sum Nn = Y1 + Y2 + · · ·+ Yn will be a negative-binomial random variable
with parameters n and p (n ≥ 1, p ∈ (0, 1)), and the random sum SNn will
be an extension of the SY1 , and we will call it by negative–binomial random
summation (see Remark 2.2 in next Section and Theorems 3.4, 3.5 and 3.6 in
last Section).

As far as we know, up to the present there is just a little number of the
results concerning with convergence rates in limit theorems for an extension
of random summations have been discussed like by Chen and Shao (2007) in
[3] for case of independent and identically distributed random variables and
by Islack (2013) in case of m-dependent and identically distributed random
variables (see [12] for more details).

The main purpose of this paper is to investigate the characterizations and
asymptotic behaviors of the extended random summations of i.i.d. random
variables when the numbers of random summation is a partial sum of n i.i.d.
non-negative integer-valued random variables. Some limit theorems for ex-
tended random summations like central limit theorem and weak law of large
numbers are re-established. Moreover, some limit theorems for binomial ran-
dom sum (Corollary 3.1), geometric random sums (Corollary 3.2 and Corol-
lary 3.4) and negative-binomial random sums (Theorems 3.3, 3.4 and 3.5)
also considered. The received results are extensions of the known results (see
[1, 4–10,16–18,21–24] and [14]).

The organization of this paper is as follows. Section 2 is devoted to the
discussion on some characterizations of random summation as mean, variance,
generating function and characteristic function. Section 3 gives some results on
asymptotic behaviors of normalization of the extended random summations.
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2. Characterizations of random summation

Throughout this paper, we shall denote by ψ(t) and ϕ(t) the generating
function and characteristic function of random variables, respectively. We start
to consider some characterizations of the random summation SNn with two
following propositions.

Proposition 2.1. Let X,X1, X2, . . . be a sequence of i.i.d. random variables
with common distribution FX , mean E(X) = µ, and finite variance D(X) =
σ2 < +∞. Suppose that Y, Y1, Y2, . . . , Yn are i.i.d. non-negative integer-valued
random variables with mean E(Y ) = α, and finite variance D(Y ) = τ2 < +∞.
Additionally, assume that random variables X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn
are independent. Define

(1) SNn :=

Nn∑
k=1

Xk,

where Nn = Y1 + Y2 + · · ·+ Yn. Then,

(1) Probability distribution function of random summation SNn in (1) is
defined in form

FSNn (x) = P (SNn ≤ x) =

∞∑
k=1

P (Nn = k)× P (Sk ≤ x)

=

∞∑
k=1

P (Nn = k)× F ∗kX (x),

where F ∗kX (x) denotes the k–th convolution power of the distribution
function FX(x).

(2) The Wald’s identity for random summation SNn in (1) is given by

E(SNn) = n× E(Y )× E(X) = nαµ.

(3) Variance of random summation in (1) is defined by

D(SNn) = n
[
E(Y )×D(X) +D(Y )× (E(X))2

]
= n

[
ασ2 + τ2µ2

]
.

Proof. (1) It is easy to verify that

FSNn (x) = P (SNn ≤ x) = E(I(−∞,x](SNn)) = E(E(I(−∞,x](SNn) | Nn))

=

∞∑
k=1

P (Nn = k)E(I(−∞,x](Sk) | Nn = k)

=

∞∑
k=1

P (Nn = k)E(I(−∞,x](Sk))

=

∞∑
k=1

P (Nn = k)P (Sk ≤ x) =

∞∑
k=1

P (Nn = k)× F ∗kX (x),



608 L. T. GIANG AND T. L. HUNG

where

IA(x) =

{
1, if x ∈ A
0, if x /∈ A.

(2) Evidently,

E(SNn) =

∞∑
k=1

P (Nn = k)× E(Sk) =

∞∑
k=1

kP (Nn = k)× E(X)

= nE(Y )E(X) = nαµ.

(3) It is obvious that

E(S2
Nn) = E(E(S2

Nn | Nn)) =

∞∑
k=1

P (Nn = k)× E(S2
k | Nn = k)

=

∞∑
k=1

P (Nn = k)× E(S2
k)

=

∞∑
k=1

P (Nn = k)

 k∑
j=1

EX2
j +

k∑
i 6=j
i,j=1

E(Xi)× E(Xj)


=

∞∑
k=1

P (Nn = k)
[
kE
(
X2
)

+
(
k2 − k

)
(E (X))

2
]

=

∞∑
k=1

P (Nn = k)
[
kD (X) + k2(E (X))

2
]

= E (Nn)×D (X) + E
(
Nn

2
)
× (E (X))

2
.

Therefore,

D(SNn) = E(S2
Nn)− (E(SNn))2

= E(Nn)×D(X) + E(N2
n)(E(X))2 − (E(Nn)× E(X))2

= n
[
E(Y )×D(X) +D(Y )× (E(X))2

]
= n

[
ασ2 + τ2µ2

]
. �

Remark 2.1. For the case of n = 1, we have the well–known Wald’s identity
(see for instance [8], Theorem 9.1, page 194)

E(SY1
) = E(Y1)× E(X) = E(Y )× E(X) = αµ,

and

D(SY1) = E(Y1)×D(X) + (E(X))2 ×D(Y1) = ασ2 + µ2τ2.

Remark 2.2. On account of the Proposition 2.1, we consider following exam-
ple, which will be used in next section. Suppose that Y, Y1, Y2, . . . , Yn are
independent, geometric distributed random variables with the success proba-
bility p ∈ (0, 1) (for short, Yj ∼ Geo(p), p ∈ (0, 1). We remark that the partial
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sum Nn =
∑n
j=1 Yj will be a negative–binomial distributed random variable

with two parameters n and p, Nn ∼ NB(n, p), n = 1, 2, . . . , with

P (Nn = k) =

(
k − 1

n− 1

)
pn(1− p)k−n, k = n, n+ 1, n+ 2, . . . .

Additionally, assume that random variables X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn
are independent. Then, the random summation SNn will become a negative-
binomial random summation of random variables X1, X2, . . . with following
probability distribution function

FSNn (x) = P (SNn ≤ x) =

∞∑
k=1

(
k − 1

n− 1

)
pn(1− p)k−n × P (Sk ≤ x)

=

∞∑
k=1

(
k − 1

n− 1

)
pn(1− p)k−n × F ∗kX (x), k = n, n+ 1, n+ 2, . . . ,

where F ∗kX (x) denotes the k–th convolution power of the distribution function
FX(x).

Proposition 2.2. Assume that the hypotheses of Proportion 2.1 hold. Then

(1) Generating function of the random summation SNn in (1) is given by

ψSNn (t) = E(tSNn ) = (ψY ◦ ψX (t))
n
.

(2) Characteristic function of the random summation SNn in (1) is defined
by

ϕSNn (t) = E(eitSNn ) = (ψY ◦ ϕX (t))
n
.

Proof. Write pk = P (Nn = k), k = 0, 1, . . . . Then,

(1) Direct computation shows that the generating function of the random
summation SNn will be given by

ψSNn (t) = E
(
tSNn

)
= E

(
E
(
tSNn | Nn

))
=

∞∑
k=0

pkE
(
tSNn | Nn = k

)
=

∞∑
k=0

pkE
(
tSk
)

=

∞∑
k=0

pk
[
E
(
tX
)]k

=

∞∑
k=0

pk[ψX (t)]
k

= E
(

[ψX (t)]
Nn
)

= E
(
ψX(t)

Y1 × ψX(t)
Y2 × · · · × ψX(t)

Yn
)

=
(
E
(
ψX(t)

Y
))n

= (ψY ◦ ψX (t))
n
.

(2) Upon simple computation, the characteristic function of the random
summation SNn is defined as follows

ϕSNn (t) = E
(
eitSNn

)
= E

(
E
(
eitSNn | Nn

))
=

∞∑
k=0

pkE
(
eitSNn | Nn = k

)
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=

∞∑
k=0

pkE
(
eitSk

)
=

∞∑
k=0

pk
[
E
(
eitX

)]k
=

∞∑
k=0

pk[ϕX (t)]
k

= E
(

[ϕX (t)]
Nn
)

= E
(
ϕX(t)

Y1 × ϕX(t)
Y2 × · · · × ϕX(t)

Yn
)

=
(
E
(
ϕX(t)

Y
))n

= (ψY ◦ ϕX (t))
n
.

�

Remark 2.3. For the case of n = 1, when P (N1 = Y1) = 1, we will return to
known results (see for instance [8], Theorem 9.2 and Theorem 9.3, page 194)

(1) ψSY1 (t) = ψY ◦ ψX (t),

(2) ϕSY1 (t) = ψY ◦ ϕX (t).

3. Asymptotic behaviors of the extended random summations

Throughout the forthcoming, unless otherwise specified, we shall denote by
d−→ and

P−→ the convergence in distribution and in probability, respectively. The
following limit theorems are extensions of classical results for random summa-
tions of i.i.d. random variables.

Theorem 3.1 (Weak law of large numbers). Let X,X1, X2, · · · be a sequence of
i.i.d. random variables with finite mean µ = E(X). Suppose that Y, Y1, Y2, . . .,
Yn are i.i.d., non-negative integer-valued random variables with finite mean α =
E(Y ). Moreover, assume that random variables X,X1, X2, . . . and Y, Y1, Y2, . . .,

Yn are independent. Write SNn :=
∑Nn
i=1Xi, where Nn = Y1 + Y2 + · · · + Yn.

Then, the weak law of large numbers for random summation states in form

(2)
SNn
n

P−→ αµ as n→∞.

Proof. In view of the continuity theorem for characteristic function (see [8] for
more details), it suffices to prove that

ϕSNn
n

(t)→ ϕαµ(t) as n→∞, for −∞ < t < +∞.

According to Proportion 2.2, the characteristic function of random summation
SNn
n is given by

ϕSNn
n

(t) = ϕSNn

(
t

n

)
=

[
ψY ◦ ϕX

(
t

n

)]n
.

Setting h (t) = ln [ψY ◦ ϕX (t)] . Direct computation shows that h(0) = 0, and
the derivative of the function h(t) is calculated by

h
′
(t) =

dh(t)

dt
=

d
dt [ψY ◦ ϕX(t)]

ψY ◦ ϕX(t)
=
E
[
Y (ϕX(t))Y−1ϕ

′

X(t)
]

E [(ϕX(t))Y ]
.
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It is easily seen that h
′
(0) = E [Y iµ] = iE(Y )µ = iαµ. Then, by letting n→∞,

we have

lim
n→∞

ϕSNn
n

(t) = lim
n→∞

exp [nh(t/n)] = lim
t/n→0

exp

[
h(t/n)− h(0)

t/n− 0
× t
]

= exp
(
h

′
(0)
)

= exp(αµit) = ϕαµ(t) for all t.

Consequently,
SNn
n

P−→ αµ as n→∞.

This finishes the proof. �

Theorem 3.2 (Central limit theorem). Let X,X1, X2, . . . be a sequence of
i.i.d. random variables with mean µ = E(X) and positive, finite variance
D(X) = σ2 < +∞. Suppose that Y, Y1, Y2, . . . , Yn is a sequence of i.i.d., positive
integer-value random variables with mean α = E(Y ) ∈ (0,+∞) and positive,
finite variance D(Y ) = τ2 < +∞. Additionally, assume that random variables

X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn are independent. Write SNn :=
∑Nn
j=1Xj ,

where Nn := Y1 + Y2 + · · ·+ Yn. Then,

SNn − nαµ√
n[ασ2 + µ2τ2]

d−→ N (0, 1) as n→∞.

Proof. According to the assumptions on sequence Y, Y1, Y2, . . . , it is easily seen
that the central limit theorem for a sequence of Y1, Y2, . . . holds, i.e.,

(3)
Nn − E(Nn)√

D(Nn)
=
Nn − nα
τ
√
n

d−→ N (0, 1) as n→∞.

By an argument analogous, on account of above assumptions for sequence
X,X1, X2, . . . , the central limit theorem confirms that

(4)
Sn − E(Sn)√

D(Sn)
=
Sn − nµ
σ
√
n

d−→ N (0, 1) as n→∞.

According to Corollary 4 from [21], combining the (3) with (4), we conclude
that

SNn − E(SNn)√
D(SNn)

=
SNn − nαµ√
n[ασ2 + µ2τ2]

d−→ N (0, 1) as n→∞.

(See also [5], Chapter VIII, Theorem 4, page 265 or [8], Theorem 3.2, page
346 or [20], Chapter VIII, Section 7, Theorem 2, page 473). The proof is
completed. �

Let X,X1, X2, . . . be a sequence of i.i.d. random variables with mean E(X)
= µ, and finite variance D(X) = σ2 < +∞. Suppose that Y, Y1, Y2, . . . , Yn
are independent, Bernoulli distributed random variables, Yj ∼ Bernoulli(p),
p ∈ (0, 1). Moreover, assume that they are independent of all Xj , j = 1, 2, . . . .
For n ≥ 1, setting a partial sum Nn =

∑n
j=1 Yj . It is easily seen that the Nn is

a binomial random variable, Nn ∼ Bn(p), n ≥ 1, p ∈ (0, 1). Thus, the random
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sum SNn := X1 +X2 + · · ·+XNn has become a binomial random summation.
The following corollary is a direct result of Theorem 3.2.

Corollary 3.1. Assume that the hypotheses of Theorem 3.2 hold. Then

SNn − npµ√
n[pσ2 + µ2p(1− p)]

d−→ N (0, 1) as n→∞.

Proof. Under the above assumption that Y ∼ Ber(p), p ∈ (0, 1), it follows that

E(Y ) = p and D(Y ) = p(1− p) ≤ 1

4

and

E(SNn) = n× E(Y )× E(X) = npµ,

with

D(SNn) = n[E(Y )×D(X) +D(Y )× (E(X))2] = npσ2 + µ2np(1− p).
Then, on account of the above Theorem 3.2, we finish the proof. �

Assume that Y, Y1, Y2, . . . , Yn are independent, geometric distributed ran-
dom variables with common success probabilities p, (in short, Yj ∼ Geo(p),
p ∈ (0, 1)). Setting Nn =

∑n
j=1 Yj , n ≥ 1 and SNn =

∑Nn
j=1Xj . It is to be

noticed that Nn is a negative-binomial random variable with two parameters
n and p, in short, Nn ∼ NB(n, p), n ≥ 1, p ∈ (0, 1). Thus, the random sum
SNn has become a negative-binomial random summation. The forthcoming
theorems will be related to these negative-binomial random summations (see
Remark 2.2).

Theorem 3.3. Let X,X1, X2, . . . be a sequence of i.i.d., positive random vari-
ables with a finite expectation E(X) = µ ∈ (0,+∞). Suppose that Y, Y1, Y2, . . .,
Yn are independent, geometric random variables with common success proba-
bilities p, Yj ∼ Geo(p), p ∈ (0, 1). Moreover, assume that random variables
X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn are independent. Setting Nn =

∑n
j=1 Yj,

n ≥ 1 and SNn =
∑Nn
j=1Xj . Then,

SNn
E(Nn)

d−→ G as p→ 0+,

where G is a Gamma random variable with two parameters n and n
µ (in short,

G ∼ Gamma(n, nµ )).

Proof. Let us denote by ϕ(t) and ψ(t) the characteristic function and generating
functions, respectively. It can be verified that the characteristic function of a

Gamma distributed random variable is ϕG(t) =
(

1
1−iµ tn

)n
, and the generating

function of Y ∼ Geo(p) is given by

ψY (t) =
pt

1− (1− p)t
.
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On account of Proposition 2.2, the characteristic function of
SNn
E(Nn)

will be given

as follows

(5) ϕ SNn
E(Nn)

(t)=ϕSNn

( p
n
t
)

=
[
ψY ◦ ϕX

( p
n
t
)]n

=

 pϕX

( p
n
t
)

1− (1− p)ϕX
( p
n
t
)
n.

According to Taylor’s expansion, there exists a real number c between 0 and
p tn , such that

ϕX

( p
n
t
)

= ϕX (0) +
p

n
tϕ′X (c) = 1 +

p

n
tϕ′X (c) .

Therefore

ϕ SNn
E(Nn)

(t) =

 pϕX

( p
n
t
)

1− (1− p)ϕX
( p
n
t
)
n =

 p
(

1 +
p

n
tϕ′X (c)

)
1− (1− p)

(
1 +

p

n
tϕ′X (c)

)
n

=

 1 +
p

n
tϕ′X (c)

1− t

n
ϕ′X (c) +

p

n
tϕ′X (c)


n

.

Letting p→ 0+, so p
n t→ 0+, it follows that c→ 0. Then,

(6)

lim
p→0+

ϕ SNn
E(Nn)

(t) =

 1

1− t

n
ϕ′X (0)


n

=

 1

1− t

n
iE (X)


n

=

(
1

1− iµ tn

)n
= ϕG(t).

This finished the proof. �

It is worth pointing out that when P (N1 = Y1) = 1, we have a desired
geometric sum SN1

and the following corollary will be hold and it is analogous
to Renyi’s results in 1957 for geometric sum of i.i.d. positive-valued random
variables (see [13,17,20], for more details).

Corollary 3.2. Let X,X1, X2, . . . be a sequence of i.i.d., positive-valued ran-
dom variables with finite expectation E(X) = µ ∈ (0,+∞). Let Y1 be a geo-
metric random variable with success probability p ∈ (0, 1). Moreover, assume
that random variables X,X1, X2, . . . and Y1 are independent. Write SY1

=∑Y1

j=1Xj . Then,

SY1

E(Y1)

d−→W(µ) as p→ 0+,

where W(µ) is an exponential random variable with expectation E(W(µ)) = µ,
(in short, W(µ) ∼ Exp(µ−1)).
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Proof. Applying (5) and (6) when n = 1, with N1 = Y1 and SN1
=
∑Y1

i=1Xi,
we conclude that

lim
p→0+

ϕ SY1
E(Y1)

=

(
1

1− iµt

)
= ϕWµ(t).

It follows that
SY1

E(Y1)

d−→W(µ) as p→ 0+.

The proof is complete finished �

Suppose that Y, Y1, Y2, . . . , Yn are independent, geometric distributed ran-
dom variables with common success probability p, Yj ∼ Geo(p), p ∈ (0, 1).
For every n ≥ 1, we will denote by Nn =

∑n
j=1 Yj the partial sum. The

random sum Nn is a negative-binomial random variable with parameters n
and p,Nn ∼ NB(n, p), n ≥ 1, p ∈ (0, 1). Thus, the random summation

S2
Nn

=
∑Nn
j=1X

2
j is a negative-binomial random summation of squares of stan-

dard normal distributed random variables.

Theorem 3.4. Let X,X1, X2, . . . be a sequence of independent, standard nor-
mal distributed random variables, Xj ∼ N (0, 1), j = 1, 2, . . . . Suppose that
Y, Y1, Y2, · · · , Yn are independent, geometric distributed random variables with
common success probability p, Yj ∼ Geo(p), p ∈ (0, 1). Moreover, assume that
random variables X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn are independent. For ev-

ery n ≥ 1, write Nn =
∑n
j=1 Yj and define S2

Nn
=
∑Nn
j=1X

2
j . Then,

S2
Nn

E(Nn)

d−→ G as p→ 0+,

where G is a gamma distributed random variable, G ∼ Gamma(n, n).

Proof. Let us denote by ϕX2(t) the characteristic function of random variable
X2 and by ϕG(t) the characteristic function of random variables G. It is easily
seen that the characteristic function of a gamma random variable ϕG(t) is given
by

ϕG(t) =

(
n

n− it

)n
.

Since Xj ∼ N (0, 1), we inference that X2
j will be a chi-squared random variable

with degree of freedom 1. (in short, X2
j ∼ χ2

1(1).) Therefore, the characteristic

function of X2
j is defined as follows

ϕX2 (t) =
1√

1− 2it
.

Since Y ∼ Geo(p), the generating function of Y is given by

ψY (t) =
pt

1− (1− p) t
.
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Then, according to Proposition 2.2, the characteristic function of S2
Nn

is defined
by

ϕS2
Nn

(t) = [ψY ◦ ϕX2 (t)]
n

=

[
pϕX2 (t)

1− (1− p)ϕX2 (t)

]n
.

Thus, the characteristic function of
S2
Nn

E(Nn)
is given as follows

ϕ S2
Nn

E(Nn)

(t) = ϕS2
Nn

( p
n
t
)

=

 pϕX2

( p
n
t
)

1− (1− p)ϕX2

( p
n
t
)
n

=


√

1− 2i
p

n
t+ 1− p

2− 2i
t

n
− p


n

.

Letting p→ 0+, we conclude that

(7) lim
p→0+

ϕ S2
Nn

E(Nn)

(t) =

(
n

n− it

)n
= ϕG (t) .

We have the complete proof. �

It is worth noticing that in case of P (N1 = Y1) = 1, we have a result re-
lated to geometric sum of square standard normal distributed random variables,

SY1
=
∑Y1

j=1X
2
j . This geometric sum should be considered as a χ2

Y1
-squared

random variable with geometric degrees of freedom Y1.

Corollary 3.3. Let X,X1, X2, . . . be a sequence of independent, standard nor-
mal distributed random variables, X ∼ N (0, 1). Let Y1 be a geometric random
variable with parameter p, Y1 ∼ Geo(p), p ∈ (0, 1). Moreover, assume that

random variables X,X1, X2, . . . and Y1 are independent. Set S2
Y1

=
∑Y1

j=1X
2
j .

Then,

S2
Y1

E(Y1)

d→W(1) as p→ 0+,

where W(1) ∼ Exp(1) is an exponential random variable with mean 1.

Proof. The proof is immediate from (7) with n = 1, i.e.,

lim
p→0+

ϕ S2
Y1

E(Y1)

(t) =

(
1

1− it

)
= ϕW1 (t) .

�

The following theorem is concerning with the negative-binomial random

summation SNn =
∑Nn
j=1Xj , where Nn = Y1 +Y2 + · · ·+Yn, with Yj ∼ Geo(p),

p ∈ (0, 1).
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Theorem 3.5. Let X,X1, X2, . . . be a sequence of i.i.d., non-negative random
variables with mean zero E(X) = 0 and finite variance D(X) = σ2 < +∞.
Suppose that Y, Y1, Y2, . . . , Yn are independent, geometric distributed random
variables with common success probability p, Yj ∼ Geo(p), p ∈ (0, 1). Moreover,
assume that random variables X,X1, X2, . . . and Y, Y1, Y2, . . . , Yn are indepen-

dent. Write Nn =
∑n
j=1 Yj and define SNn =

∑Nn
j=1Xj . Then,

(8)
SNn√
E(Nn)

d→
n∑
j=1

Lj as p→ 0+,

where L1,L1, . . . ,Ln are n independent, Laplace distributed random variables

with parameters zero and
√
2n
σ ,Lj ∼ Laplace

(
0,
√
2n
σ

)
, j = 1, 2, . . . , n.

Proof. An easily computation that, for a geometric random variable Y ∼
Geo(p), the generating function is given by

ψY (t) =
pt

1− (1− p) t
.

According to Proposition 2.2, the characteristic function of
SNn√
E(Nn)

will be

calculated as follows

ϕ SNn√
E(Nn)

(t) = ϕSNn

(√
p

n
t

)
=

[
ψY ◦ ϕX

(√
p

n
t

)]n
=

[
pϕX

(√
p
n t
)

1− (1− p)ϕX
(√

p
n t
)]n.

On account of Taylor expansion, there exists a real number c between 0 and√
p
n t, we obtain

ϕX

(√
p

n
t

)
= ϕX (0) +

√
p

n
tϕ′X (0) +

pt2

2n
ϕ′′X (c)

= 1 +

√
p

n
tiE (X) +

pt2

2n
ϕ′′X (c)

= 1 +
pt2

2n
ϕ′′X (c) .

Therefore

ϕ SNn√
E(Nn)

(t) =

[
pϕX

(√
p
n t
)

1− (1− p)ϕX
(√

p
n t
)]n =

 p
[
1 + pt2

2n ϕ
′′ (c)

]
1− (1− p)

[
1 + pt2

2n ϕ
′′ (c)

]
n

=

[
1 + pt2

2n ϕ
′′ (c)

1− t2

2nϕ
′′ (c) + pt2

2n ϕ
′′ (c)

]n
.
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Letting p→ 0+, it follows
√

p
n t→ 0+. Thus c→ 0. Then,

lim
p→0+

ϕ SNn√
E(Nn)

(t) =

[
1

1− t2

2nϕ
′′ (0)

]n
=

[
1

1 + σ2t2

2n

]n
= ϕ n∑

j=1
Lj

(t) .

This finishes the proof. �

Corollary 3.4. Let X,X1, X2, . . . be a sequence of i.i.d., non-negative random
variables with mean E(X) = 0 and finite variance D(X) = σ2 < +∞. Assume
that Y1 ∼ Geo(p) and independent of all Xj, j ≥ 1. Then,

SY1√
E(Y1)

d−→L as n→∞,

where SY1
=
∑Y1

j=1Xj and L ∼ Laplace(0,
√
2
σ ).

Proof. On account of (8) for n = 1, the corollary is proven. �
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