• Title/Summary/Keyword: homogeneous Finsler space

Search Result 11, Processing Time 0.021 seconds

HOMOGENEOUS GEODESICS IN HOMOGENEOUS SUB-FINSLER MANIFOLDS

  • Zaili Yan;Tao Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1607-1620
    • /
    • 2023
  • In this paper, we mainly study the problem of the existence of homogeneous geodesics in sub-Finsler manifolds. Firstly, we obtain a characterization of a homogeneous curve to be a geodesic. Then we show that every compact connected homogeneous sub-Finsler manifold and Carnot group admits at least one homogeneous geodesic through each point. Finally, we study a special class of ℓp-type bi-invariant metrics on compact semi-simple Lie groups. We show that every homogeneous curve in such a metric space is a geodesic. Moreover, we prove that the Alexandrov curvature of the metric space is neither non-positive nor non-negative.

HOMOGENEOUS FUNCTION AND ITS APPLICATION IN A FINSLER SPACE

  • Kim, Byung-Doo;Choi, Eun-Seo
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.385-392
    • /
    • 1999
  • We deal with a differential equation which is constructed from homogeneous function, and its geometrical meaning in a Finsler space. Moreover, were prove that a locally Minkowski space satisfying a differential equation F\ulcorner=0 is flat-parallel.

  • PDF

ON PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE INFINITE SERIES (α,β)-METRIC

  • Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.25-36
    • /
    • 2012
  • We introduced a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$-metric $L({\alpha},{\beta})={\beta}\sum\limits_{k=0}^r\(\frac{\alpha}{\beta}\)^k$, where ${\alpha}<{\beta}$ and investigated it with respect to Berwald space ([12]) and Douglas space ([13]). The present paper is devoted to finding the condition that is projectively at on a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$)-metric above.

THE RANDER CHANGES OF FINSLER SPACES WITH ($\alpha,\beta$)-METRICS OF DOUGLAS TYPE

  • Park, Hong-Suh;Lee, Il-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.503-521
    • /
    • 2001
  • A change of Finsler metric L(x,y)longrightarrowL(x,y) is called a Randers change of L, if L(x,y) = L(x,y) +$\rho$(x,y), where $\rho$(x,y) = $\rho$(sub)i(x)y(sup)i is a 1-form on a smooth manifold M(sup)n. Let us consider the special Randers change of Finsler metric LlongrightarrowL = L + $\beta$ by $\beta$. On the basis of this special Randers change, the purpose of the present paper is devoted to studying the conditions for Finsler space F(sup)n which are transformed by a special Randers change of Finsler spaces F(sup)n with ($\alpha$,$\beta$)-metrics of Douglas type to be also of Douglas type, and vice versa.

  • PDF

PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE MATSUMOTO METRIC

  • Park, Hong-Suh;Lee, Il-Yong;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.501-513
    • /
    • 2003
  • The Matsumoto metric is an ($\alpha,\;\bata$)-metric which is an exact formulation of the model of Finsler space. Lately, this metric was expressed as an infinite series form for $$\mid$\beat$\mid$\;<\;$\mid$\alpha$\mid$$ by the first author. He introduced an approximate Matsumoto metric as the ($\alpha,\;\bata$)-metric of finite series form and investigated it in [11]. The purpose of the present paper is devoted to finding the condition for a Finsler space with an approximate Matsumoto metric to be projectively flat.

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

DECOMPOSITION FOR CARTAN'S SECOND CURVATURE TENSOR OF DIFFERENT ORDER IN FINSLER SPACES

  • Abdallah, Alaa A.;Navlekar, A.A.;Ghadle, Kirtiwant P.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.433-448
    • /
    • 2022
  • The Cartan's second curvature tensor Pijkh is a positively homogeneous of degree-1 in yi, where yi represent a directional coordinate for the line element in Finsler space. In this paper, we discuss the decomposition of Cartan's second curvature tensor Pijkh in two spaces, a generalized 𝔅P-recurrent space and generalized 𝔅P-birecurrent space. We obtain different tensors which satisfy the recurrence and birecurrence property under the decomposition. Also, we prove the decomposition for different tensors are non-vanishing. As an illustration of the applicability of the obtained results, we finish this work with some illustrative examples.