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HOMOGENEOUS GEODESICS IN HOMOGENEOUS

SUB-FINSLER MANIFOLDS

Zaili Yan and Tao Zhou

Abstract. In this paper, we mainly study the problem of the existence

of homogeneous geodesics in sub-Finsler manifolds. Firstly, we obtain
a characterization of a homogeneous curve to be a geodesic. Then we

show that every compact connected homogeneous sub-Finsler manifold
and Carnot group admits at least one homogeneous geodesic through

each point. Finally, we study a special class of ℓp-type bi-invariant metrics

on compact semi-simple Lie groups. We show that every homogeneous
curve in such a metric space is a geodesic. Moreover, we prove that

the Alexandrov curvature of the metric space is neither non-positive nor

non-negative.

1. Introduction

A geodesic in a homogeneous metric space is called a homogeneous geodesic if
it is an orbit of a one-parameter subgroup of isometries. The problem of the ex-
istence of homogeneous geodesics in general homogeneous pseudo-Riemannian
(Finsler) manifolds seems to be an interesting one, and some results have been
established in several papers. Firstly, Kowalski and Szenthe [15] proved that
any homogeneous Riemannian manifold admits at least one homogeneous ge-
odesic through each point. Then in [13], Dušek proved that any homogeneous
affine manifold admits at least one homogeneous geodesic through each point.
Finally, Yan and Huang [20] proved that any homogeneous Finsler space admits
at least one homogeneous geodesic through each point. We refer the readers to
[4, 12] and the references therein for more information.

Recently, Podobryaev [18] studied homogeneous geodesics in sub-Riemann-
ian manifolds. He obtained a criterion for a geodesic to be homogeneous in
terms of its initial momentum and a broad condition for the existence of at least
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one homogeneous geodesic. In this paper, we study homogeneous geodesics in
homogeneous sub-Finsler manifolds and will prove the following main result.

Theorem 1.1. Every compact connected homogeneous sub-Finsler manifold
and Carnot group admits at least one homogeneous geodesic through each point.

Remark 1.2. In this paper, the sub-Finsler metrics are reversible. In fact,
Theorem 1.1 is still valid for irreversible homogeneous sub-Finsler metrics.

The arrangement of this paper is as follows. In Sections 2, 3, and 4, we recall
some terminologies and results on metric spaces and homogeneous sub-Finsler
manifolds. In Section 5, we study the problem of the existence of homogeneous
geodesics in sub-Finsler manifolds and prove Theorem 1.1. In Section 6, we
study a special class of ℓp-type bi-invariant metrics on compact semi-simple Lie
groups. We will show that every homogeneous curve in such a metric space is
a geodesic.

2. Metric spaces

In this section, we recall some results about metric spaces, which can be
found in [6].

Definition 2.1. Let X be a set and d : X × X → [0,∞) be a function on
X. The pair (X, d) is called a metric space if for any x, y, z ∈ X satisfies the
following properties:

(1) non-negativity: d(x, y) ≥ 0 with equality if and only if x = y;
(2) symmetry: d(x, y) = d(y, x);
(3) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Given x ∈ X and r > 0, the open ball and closed ball of radius r about x
shall be denoted by

B(x, r) = {y ∈ X | d(x, y) < r}, B̄(x, r) = {y ∈ X | d(x, y) ≤ r},
respectively. Let T denote the topology on (X, d) induced by the open balls.

Definition 2.2. Let (X, d) be a metric space.

• A sequence {xi} in X is called a Cauchy sequence if, for each ε > 0,
there exists N > 0 satisfying when m ≥ n > N , then d(xn, xm) < ε.

• Given ε > 0, a subset A ⊂ X is called an ε-net of X if, for each x ∈ X,
there exists ax ∈ A such that d(ax, x) < ε.

• (X, d) is called complete if every Cauchy sequence in X converges in
X with respect to T .

• (X, d) is called totally bounded if it has a finite ε-net for each ε > 0.
• (X, d) is called boundedly compact if every bounded closed ball is com-
pact.

Theorem 2.3. Let (X, d) be a metric space. Then the following statements
are equivalent:
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• (X, d) is compact.
• (X, d) is sequentially compact.
• (X, d) is complete and totally bounded.

Definition 2.4. Let (X, d) be a metric space and γ : [a, b] → X be a continuous
curve. The length of γ with respect to the metric d, denoted by Ld(γ), is defined
by the supremum of the sums

Σ(P ) =

N∑
i=1

d(γ(ti−1), γ(ti))

over all the partitions P = {t0, . . . , tN} of [a, b], where a = t0 ≤ t1 ≤ · · · ≤
tN = b. A continuous curve is said to be rectifiable if its length is finite.

Given two points x, y ∈ X, define the associated metric dL of d as follows:

dL(x, y)(2.1)

= inf{Ld(γ) | γ : [0, T ] → X, γ is continuous, γ(0) = x, γ(T ) = y}.

We have the following statements.

Theorem 2.5 ([6], Proposition 2.3.12). Let (X, d) be a metric space with the
associated metric dL defined by (2.1).

(1) dL(x, y) ≥ d(x, y), ∀x, y ∈ X.
(2) LdL

(γ) = Ld(γ) for any rectifiable curve γ in (X, d).
(3) (dL)L = dL.

In particular, d is called an intrinsic metric if d = dL.

Definition 2.6. Let (X, d) be a metric space.

• A continuous curve γ : [0, T ] → X is called a shortest path if its length
is minimal among the continuous curves with the same endpoints; in
other words, Ld(γ

′) ≥ Ld(γ) for any continuous curve γ′ from γ(0) to
γ(T ).

• A continuous curve γ : [0, T ] → X is called a geodesic if for every
t ∈ [0, T ], there exists an open interval (a, b) containing t in [0, T ] such
that Ld(γ|[a,b]) = d(γ(a), γ(b)).

• A continuous curve γ : [0, T ] → X is called a minimizing geodesic if
Ld(γ|[a,b]) = d(γ(a), γ(b)) for every closed interval [a, b] ⊂ [0, T ].

• A continuous curve γ : [0, T ] → X is said to have constant speed if
there exists a constant C > 0 such that

Ld(γ|[a,b]) = C(b− a), ∀[a, b] ⊂ [0, T ].

In particular, if C = 1, then γ is said to be parameterized by arc length.

Note that a minimizing geodesic is always a shortest path, but not vice versa
unless (X, d) is an intrinsic space. It is known that every rectifiable curve can
be parameterized by arc length, see Proposition 2.5.9 in [6].
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Theorem 2.7 (Hopf-Rinow-Cohn-Vossen Theorem, [6], Theorem 2.5.28). Let
(X, d) be a locally compact intrinsic metric space. Then the following assertions
are equivalent:

(1) (X, d) is complete.
(2) (X, d) is boundedly compact, i.e., every bounded closed ball is compact.
(3) Each constant speed geodesic γ : [0, T ) → X can be extended to a con-

tinuous curve γ : [0, T ] → X.
(4) There is a point x ∈ X such that every constant speed minimizing ge-

odesic γ : [0, T ) → X with γ(0) = x can be extended to a continuous curve
γ : [0, T ] → X.

Furthermore, if any of the above holds, every two points in X can be con-
nected by a minimizing geodesic. In this case, the metric space (X, d) is called
a geodesic space.

Now we recall the notion of Alexandrov curvature in a geodesic space. A
geodesic triangle △ in a metric space (X, d) consists of three points p, q, r ∈ X,
its vertices, and a choice of three geodesic segments [p, q], [q, r], [r, p], joining
them, its sides. Such a geodesic triangle will be denoted by △(p, q, r).

For each geodesic triangle △(p, q, r) in (X, d), we construct a comparison
triangle △̄(p̄, q̄, r̄) in the Euclidean plane with the same length of sides, i.e.,

d(p, q) = |p̄q̄|, d(q, r) = |q̄r̄|, d(r, p) = |r̄p̄|,
where | · | denotes the usual Euclidean distance on the Euclidean plane. It is
clear that a comparison triangle is uniquely defined up to a rigid motion of
Euclidean plane.

Definition 2.8. A metric space (X, d) is said to be non-positively (resp. non-
negatively) curved if in some neighborhood of each point the following holds:

• For every geodesic triangle △(p, q, r) and every point x ∈ [p, r], one has
d(x, q) ≤ |x̄q̄| (resp. d(x, q) ≥ |x̄q̄|), where x̄ is the point on the side [p̄, r̄] of a
comparison triangle △̄(p̄, q̄, r̄) such that d(p, x) = |p̄x̄|.

The definition given above was introduced by A. D. Alexandrov [1]. It pro-
vides a good notion of an upper bound on curvature in an arbitrary metric
space. Classical comparison theorems in differential geometry show that a Rie-
mannian manifold is non-positively (resp. non-negatively) curved in the above
sense if and only if all of its sectional curvatures are non-positive (resp. non-
negative).

Definition 2.9. A metric space (X, d) is called a CAT(0) space if for every geo-
desic triangle △ and comparison triangle △̄, for all x, y ∈ △ and all comparison
points x̄, ȳ ∈ △̄,

d(x, y) ≤ |x̄ȳ|.

The terminology “CAT(0)” was coined by M. Gromov ([14], p. 119). The
initials are in honour of E. Cartan, A. D. Alexandrov and V. A. Toponogov,
each of whom considered similar conditions in varying degrees of generality.
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Theorem 2.10 (Cartan-Hadamard Theorem). A complete simply connected
intrinsic non-positively curved metric space is a CAT(0) space.

3. Sub-Finsler manifolds

In this section we introduce some basic facts about sub-Finsler manifolds.

Definition 3.1. Let V be an n-dimensional real vector space. A norm F :
V → R is a function with the following properties:

(1) F (y) ≥ 0,∀y ∈ V . F (y) = 0 if and only if y = 0.
(2) F (λy) = |λ|F (y), ∀λ ∈ R, y ∈ V .
(3) F (y + z) ≤ F (y) + F (z), ∀y, z ∈ V .

In particular, a norm F is called an Euclidean norm if F =
√

⟨·, ·⟩ for some
inner product ⟨·, ·⟩ on V .

There are many non-Euclidean norms on a vector space. Here we present
some examples which will be used in this paper.

Example 3.2 (ℓp norm). Given p ≥ 1 and a vector x = (x1, . . . , xn) in Rn,
the ℓp norm of x is defined by:

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

.

Clearly, the ℓp norm ∥ · ∥p is Euclidean if and only if p = 2.

Example 3.3 (ℓp-type norm). Let Fi be norms on vector spaces Vi, i =
1, . . . ,m, m ∈ N+. Then the function F p : V = V1 ⊕ · · · ⊕ Vm → [0,∞),
p ≥ 1, defined by

F p(y) =

(
m∑
i=1

(Fi(yi))
p

) 1
p

, ∀y = y1 + · · ·+ ym ∈ V,

is a norm. Moreover, when Fi are all Euclidean norms and p = 2, the resulting
norm F 2 is also an Euclidean norm.

Notice that a norm F on V is continuous, we have:

Proposition 3.4. Let F and ∥ · ∥ be norms on V . Then there exist constants
C2 ≥ C1 > 0 such that

C1∥y∥ ≤ F (y) ≤ C2∥y∥, ∀y ∈ V.

Definition 3.5. Let M be a connected smooth n-dimensional manifold and
S be a smooth bracket-generating distribution on M with rank k, k ≤ n, i.e.,
S is a subbundle of TM and the vector fields which are sections of S together
with all brackets span every tangent space TxM , x ∈ M . A sub-Finsler metric
on M is a real continuous function F : S → [0,∞) such that the restriction
of F to any Sx, x ∈ M , is a norm. In this case, we say that (M,S, F ) is a
sub-Finsler manifold.
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In particular, when F is induced by a Riemannian metric on M , (M,S, F )
is called a sub-Riemannian manifold. Moreover, when S = TM , the tangent
bundle of M , the corresponding sub-Finsler metrics are called Finsler metrics.

Remark 3.6. We should mention that, in classical Finsler geometry [2,8,19], a
Finsler metric on a connected smooth manifold M is a real continuous function
F : TM → [0,∞) such that

1. F is smooth on the slit tangent bundle TM \ {0}.
2. The restriction of F to any TxM , x ∈ M , is a Minkowski norm.

Let (M,S, F ) be a sub-Finsler manifold, a curve γ : [0, T ] → M is called
admissible if it is absolutely continuous and γ̇(t) ∈ Sγ(t) for almost every t ∈
[0, T ]. The length of an admissible curve γ is defined by

LF (γ) =

∫ T

0

F (γ̇(t))dt.

Define the distance function dF : M ×M → [0,∞) by

(3.1) dF (p, q) = inf{LF (γ) | γ is admissible, γ(0) = p, γ(T ) = q}.

We have the following statements.

Theorem 3.7 ([6]). Let (M,S, F ) be a sub-Finsler manifold. Then we have
(1) (M,dF ) is an intrinsic metric space.
(2) The topology T induced by (M,dF ) is exactly the original topology of M .

4. Homogeneous sub-Finsler manifolds

Definition 4.1. Let (M,S, F ) be a sub-Finsler manifold.

• A diffeomorphism ϕ of M is called an isometry if for any x ∈ M ,
X ∈ Sx, F (dϕ(X)) = F (X).

• A mapping ϕ of M onto itself is called a distance isometry if for any
p, q ∈ M , dF (ϕ(p), ϕ(q)) = dF (p, q).

It is easily seen that, the set of isometries of (M,S, F ) forms a group, de-
noted by I(M), which is clearly contained in the group I(M,dF ) of distance
isometries. Let Ip(M,dF ) be the isotropy subgroup of I(M,dF ) at p ∈ M .
Van Dantzig and van der Waerden [9] proved that I(M,dF ) is a locally com-
pact topological transformation group on M with respect to the compact-open
topology and Ip(M,dF ) is compact. Bochner and Montgomery [5] proved that
a locally compact group of differentiable transformations of a manifold is a Lie
transformation group. Combing the above results, in fact, we have proved the
following

Theorem 4.2. Let (M,S, F ) be a sub-Finsler manifold. Then the group of
isometries I(M) of M is a Lie transformation group of M . Let p ∈ M and
Ip(M) be the isotropy subgroup of I(M) at p. Then Ip(M) is compact.
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In the Riemannian (classical Finsler) geometry, it was proved in [11,17] that,
the group I(M,dF ) coincides with the group of isometries I(M). In general
case, even in the sub-Riemannian setting, it is still unknown whether I(M,dF )
is a Lie transformation group of M [7].

Definition 4.3. A connected sub-Finsler manifold (M,S, F ) is called a homo-
geneous sub-Finsler manifold if its isometries group I(M) acts transitively on
M , namely, for every pair p, q ∈ M , there exists an isometry ϕ ∈ I(M) such
that ϕ(p) = q.

Now we recall some important results due to Berestovskǐı [3]. Let G be
a connected Lie group which acts effectively and transitively on a connected
smooth manifold M and let H be the isotropy group of G at a fixed point
p ∈ M . Then M can be viewed as the coset space G/H by sending g · p to gH,
∀g ∈ G. Let g and h denote the Lie algebras of G and H, respectively. Denote
by K the Killing form of g. Since H is compact and the restriction of K to h
is non-degenerate [15], we have a K-orthogonal reductive decomposition

g = h+m,

where m ⊂ g is a vector subspace such that K(h,m) = 0 and Ad(h)(m) ⊂ m,
∀h ∈ H, here Ad denotes the adjoint representation of G. Moreover, one can
identify m with the tangent space TpM of M at the point p via the mapping

π : X → d
dt

∣∣
t=0

exp(tX) · p, where exp denotes the exponential map of g. Let
Prm : g → m denote the natural projection. Then for any g ∈ G and X ∈ g,
we have

dg−1

(
d

dt

∣∣∣
t=0

exp(tX)g · p
)

=
d

dt

∣∣∣
t=0

exp(tAdg−1(X)) · p

= π ◦ Prm
(
Adg−1(X)

)
.

Hence, the tangent space Tg·p(M) at the point g · p can be identified as the
subspace Adg(m).

Definition 4.4. A subspace m0 ⊂ m is called bracket-generating if the smallest
Lie algebra generated by h+m0 is g itself.

Now let m0 ⊂ m be an Ad(H)-invariant bracket-generating subspace, DgH =
g∗(m0) ⊂ TgH(G/H) be the subspace of TgH(G/H) associated to m0 via the
left action of g on G/H, ∀g ∈ G. Then S0 := ∪g∈GDgH is a smooth bracket-
generating G-invariant distribution on G/H [3]. Assume Fo is an Ad(H)-
invariant norm on m0 and let F0 : S0 → R be the sub-Finsler metric on G/H
defined by

F0(g∗(X)) = Fo(X), ∀g ∈ G,X ∈ m0.

Theorem 4.5 ([3], Theorem 2). Let (M = G/H,S0, F0) be a sub-Finsler
manifold and d0 be the metric defined by (3.1). Then (M = G/H, d0) is a G-
invariant intrinsic metric space and the metric topology T coincides with the
manifold topology.
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Conversely, we have:

Theorem 4.6 ([3], Theorem 3). Any locally compact, locally contractible ho-
mogeneous space with intrinsic metric d0 is isometric to a homogeneous sub-
Finsler manifold (G/H,S0, F0) with respect to a bracket-generating subspace
m0 and an Ad(H)-invariant norm Fo on m0, which is given by

(4.1) Fo(X) = lim
t→0

d0(p, exp tX · p)
|t|

, ∀X ∈ m0.

Moreover, given a quotient space G/H, a correspondence (m0, Fo) ↔ d0 is
a bijection of the set of all such pairs onto the set of all G-invariant intrinsic
metrics on G/H.

Combing Theorem 2.7 and Theorem 4.5, we immediately have:

Theorem 4.7. Every connected homogeneous sub-Finsler manifold is a com-
plete geodesic space. Namely, every two points can be connected by a minimizing
geodesic.

For convenience, sometimes the homogeneous sub-Finsler manifold (G/H,
S0, F0) will be denoted by (G/H,m0, Fo). In particular, when m0 = m and Fo

is a Minkowski norm, (G/H,m, Fo) is a homogeneous classical Finsler manifold,
which was widely studied in the last two decades [10].

5. Homogeneous geodesics

In this section, we mainly study the problem of existence of homogeneous
geodesics in homogeneous sub-Finsler manifolds and prove Theorem 1.1.

Definition 5.1. Let (M = G/H,S0, F0) be a homogeneous sub-Finsler man-
ifold, p = eH. A geodesic γ(t) through p is called a homogeneous geodesic if
there exists a vector X ∈ g such that γ(t) = exp tX ·p. Moreover, such a vector
X is called a geodesic vector.

It is easily seen that a homogeneous geodesic γ(t) = exp tX · p is defined on
the whole R and Prm(X) ∈ m0, according to Lemma 5 in [3].

There is a well known criterion for homogeneous geodesics in the Riemannian
case due to Kowalski and Vanhecke [16].

Lemma 5.2 (Geodesic lemma). Let (M = G/H, TM, g) be a homogeneous
Riemannian manifold. Then a curve γ(t) = exp tX ·p is a homogeneous geodesic
if and only if the following equation holds:

⟨Prm(X),Prm([X,Z])⟩ = 0, ∀Z ∈ m,

where ⟨·, ·⟩ denotes the inner product on m induced by g.

It was proved in [15] that every homogeneous Riemannian manifold admits at
least one homogeneous geodesic. Recently, Podobryaev studied homogeneous
geodesics in sub-Riemannian manifolds and proved the following theorem.
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Theorem 5.3 ([18], Theorem 5). Let (G/H,m0, Fo) be a homogeneous sub-
Riemannian manifold. If kerK = m or K|m0

̸= 0, where K denotes the Killing
form of the Lie algebra of G, then there exists a homogeneous sub-Riemannian
geodesic.

To study homogeneous geodesics in sub-Finsler manifolds, we first prove the
following result.

Proposition 5.4. Let (G/H,m0, Fo) be a homogeneous sub-Finsler manifold
and Fm be an Ad(H)-invariant norm on m such that Fo(X) ≥ Fm(X), ∀X ∈
m0. Assume X ∈ g is a geodesic vector of (G/H,m, Fm) satisfying Prm(X) ∈
m0 and Fo(Prm(X)) = Fm(Prm(X)). Then X ∈ g is also a geodesic vector
of (G/H,m0, Fo). Namely, γ(t) = exp tX · H is a homogeneous geodesic in
(G/H,m0, Fo).

Proof. Notation as above. Let dF and F be the distance function and G-
invariant Finsler metric on G/H corresponding to (G/H,m, Fm), respectively.
Since γ(t) = exp tX ·H is a homogeneous geodesic in (G/H,m, Fm), there exists
a constant ε > 0 such that

εFm(Prm(X)) =

∫ ε

0

F (γ̇(t))dt = LF (γ|[0,ε]) = dF (H, exp εX ·H).

On the other hand, by the assumption that d0 ≥ dF , we obtain

dF (H, exp εX ·H) ≤ d0(H, exp εX ·H) ≤ Ld0(γ|[0,ε])

=

∫ ε

0

F0(γ̇(t))dt = εFo(Prm(X))

= εFm(Prm(X)).

This asserts that d0(H, exp εX ·H) = Ld0(γ|[0,ε]). Hence γ(t) = exp tX ·H is
a homogeneous geodesic in (G/H,m0, Fo). □

Now we state the main result in this section.

Theorem 5.5. Every compact connected homogeneous sub-Finsler manifold
(M = G/H,S0, F0) admits a homogeneous geodesic.

Proof. Since M is compact, G is compact and the Lie algebra g of G has a
decomposition g = gs+ga, where gs is compact semi-simple and ga is Abelian.
Let B be the negative of Killing form of gs and ⟨·, ·⟩0 be any inner product on
ga. Set an Euclidean inner product ⟨·, ·⟩ on g by

⟨X + Y,X + Y ⟩ = B(X,X) + ⟨Y, Y ⟩0, ∀X ∈ gs, Y ∈ ga.

It is clear that ⟨·, ·⟩ is Ad(G)-invariant. Let g be the G-invariant Riemannian
metric on M generated by ⟨·, ·⟩|m on m and denote by dg the associated Rie-
mannian distance function defined by (3.1). It follows from Lemma 5.2 that,
for every vector X ∈ m, the curve exp tX · p is a homogeneous geodesic in
(M,dg).



1616 Z. YAN AND T. ZHOU

Now assume m0 is an Ad(H)-invariant bracket-generating subspace in m and
Fo is an Ad(H)-invariant norm on m0. We will show that the homogeneous
sub-Finsler manifold (M = G/H, d0) admits a homogeneous geodesic. Let

f(z) =
F 2

o (z)
⟨z,z⟩ , ∀z ∈ m0 \ {0}. By homogeneity, f(z) can be viewed as defined

on the sphere I = {z ∈ m0 | ⟨z, z⟩ = 1}, hence it must attain its minimum and
maximum at some points. Since f > 0, we may suppose that f(z) attains the
minimal value at y ∈ I and λ = f(y) > 0. Hence F 2

o (z) ≥ λ⟨z, z⟩, ∀z ∈ m0.
Let gλ and dgλ be the Riemannian metric and distance function on M induced

by λ⟨·, ·⟩|m on m, respectively. Clearly, dgλ =
√
λdg and γ(t) = exp ty · p

is a homogeneous geodesic in (M,dgλ). By Proposition 5.4, we obtain that
γ(t) = exp ty · p is a homogeneous geodesic in (M,d0), which completes the
proof of the theorem. □

Definition 5.6. A homogeneous sub-Finsler manifold (G/H,m0, Fo) is called
a Carnot group if H = {e}, G is a connected and simply connected nilpotent
Lie group whose Lie algebra g admits a direct sum decomposition in nontrivial
vector subspaces

g = m0 ⊕m1 ⊕ · · · ⊕ms, s ≥ 1,

such that

[m0,mj ] = mj+1, j = 0, . . . , s− 1, [m0,ms] = 0.

Proposition 5.7. Let (G,m0, ⟨·, ·⟩0) be a sub-Riemannian Carnot group, where
⟨·, ·⟩0 is an inner product on m0. Then for every vector X ∈ m0, γ(t) = exp tX,
t ∈ R is a homogeneous geodesic.

Proof. We choose an inner product ⟨·, ·⟩ on g such that

⟨·, ·⟩|m0 = ⟨·, ·⟩0, ⟨mi,mj⟩ = 0, 0 ≤ i < j ≤ s.

Notice that ⟨m0, [g, g]⟩ = 0. Then by Lemma 5.2, it is easily seen that every
vector X ∈ m0 is a geodesic vector of the homogeneous Riemannian manifold
(G, g, ⟨·, ·⟩). Thus the proposition follows from Proposition 5.4. □

Combing Propositions 5.4, 5.7 and the argument in the proof of Theorem
5.5, we immediately have the following result, which completes the proof of
Theorem 1.1.

Theorem 5.8. Every Carnot group admits a homogeneous geodesic.

Proof. It follows from Proposition 3.4 that, for any norm Fo on m0, there exists
an inner product ⟨·, ·⟩0 on m0 such that F 2

o (X) ≥ ⟨X,X⟩0 for all X ∈ m0 and
F 2
o (Y ) = ⟨Y, Y ⟩0 for some nonzero vector Y ∈ m0. It is clear that Y is a

geodesic vector of Carnot group (G,m0, Fo), according to Propositions 5.7. □
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6. Bi-invariant metrics on compact Lie groups

In this section, we study a special class of bi-invariant metrics on compact
semi-simple Lie groups.

Let m ∈ N, m ≥ 2. For any i ∈ {1, . . . ,m}, let Gi be connected and
simple connected compact simple Lie group with unit ei and corresponding
Lie algebra gi. Denote by Bi the negative of Killing form of gi, gi the bi-
invariant Riemannian metric on Gi induced by Bi, and di the distance function
of (Gi, gi). The following results are true.

• di is bi-invariant. That is, for any x, y, g ∈ Gi,

di(gx, gy) = di(xg, yg) = di(x, y).

• Every geodesic in (Gi, di) is homogeneous. That is, if γ is a geodesic and
γ(0) = ei, then there exists a vector X ∈ gi such that γ(t) = exp tX, t ∈ R.

• The sectional curvature of (Gi, gi) is non-negative and hence (Gi, di) is
non-negatively curved in the sense of Definition 2.8.

Now setG = G1×G2×· · ·×Gm, g = g1×g2×· · ·×gm, B = B1⊕B2⊕· · ·⊕Bm.
Define a class of functions dp, p ≥ 1 on G by

dp ((x1, . . . , xm), (y1, . . . , ym)) =

(
m∑
i=1

dpi (xi, yi)

) 1
p

,

∀xi, yi ∈ Gi, i = 1, . . . ,m.

Theorem 6.1. Notation as above. ∀p ≥ 1, we have
(1) dp is a bi-invariant intrinsic metric on G.
(2) The norm F p on g determined by (G, dp) is given by

F p(X) =

(
m∑
i=1

(Bi(Xi, Xi))
p
2

) 1
p

, ∀X = (X1, . . . , Xm) ∈ g.

(3) ∀X ∈ g, γ(t) = exp tX, t ∈ R is a geodesic in (G, dp).
(4) If p ̸= 2, (G, dp) is neither non-positively curved nor non-negatively

curved.

Proof. (1) It is easy to see that dp is a bi-invariant metric. We now prove dp

is an intrinsic metric. Notice that (G, dp) is a compact metric space. Then
by Theorem 2.4.16 in [6], it suffices to show that, for every two points x =
(x1, . . . , xm), y = (y1, . . . , ym) ∈ G, there exists a midpoint z ∈ G satisfying
dp(x, z) = dp(y, z) = 1

2d
p(x, y). For any i ∈ {1, . . . ,m}, as the metric space

(Gi, di) is a compact homogeneous Riemannian manifold, then for the points
xi, yi ∈ Gi, there exists a midpoint zi ∈ Gi such that di(xi, zi) = di(yi, zi) =
1
2di(xi, yi). Now set z = (z1, . . . , zm) ∈ G, a quick calculation yields

dp(x, z) =

(
m∑
i=1

dpi (xi, zi)

) 1
p

=
1

2

(
m∑
i=1

dpi (xi, yi)

) 1
p

=
1

2
dp(x, y)
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and

dp(y, z) =

(
m∑
i=1

dpi (yi, zi)

) 1
p

=
1

2

(
m∑
i=1

dpi (xi, yi)

) 1
p

=
1

2
dp(x, y),

which implies that z is a midpoint between points x, y in (G, dp).
(2) Notice that

lim
t→0

di(ei, exp tXi)

|t|
= (Bi(Xi, Xi))

1
2 , ∀Xi ∈ gi.

It follows from (4.1) that, ∀X = (X1, . . . , Xm) ∈ g,

F p(X) = lim
t→0

dp ((e1, . . . , em), (exp tX1, . . . , exp tXm))

|t|

= lim
t→0

1

|t|

(
m∑
i=1

dpi (ei, exp tXi)

) 1
p

=

(
m∑
i=1

(
lim
t→0

di(ei, exp tXi)

|t|

)p
) 1

p

=

(
m∑
i=1

(Bi(Xi, Xi))
p
2

) 1
p

.

(3) Given X = (X1, . . . , Xm) ∈ g, let γ(t) = exp tX = (γ1(t), . . . , γm(t)),
where γi(t) = exp tXi. Since for all i = 1, . . . ,m, γi(t) = exp tXi is a geodesic
in (Gi, di), there exists a constant ε > 0 such that

di(ei, exp εXi) = Ldi
(γi|[0,ε]) = ε(Bi(Xi, Xi))

1
2 .

Hence

Ldp(γ|[0,ε]) =
∫ ε

0

F p(γ̇(t))dt

= ε

(
m∑
i=1

(Bi(Xi, Xi))
p
2

) 1
p

=

(
m∑
i=1

dpi (ei, exp εXi)

) 1
p

= dp(γ(0), γ(ε)).

This implies that γ|[0,ε] is a shortest path in (G, dp) and thus γ(t) = exp tX is
a geodesic in (G, dp).

(4) We consider two geodesic triangles △1(a, b1, c1) and △2(a, b2, c2) in
(G, dp), where a = (e1, . . . , em), b1 = (exp εX1, e2, . . . , em), c1 = (e1, exp εX2,
e3, . . . , em), b2 = (exp εX1, exp εX2, e3, . . . , em), c2 = (exp εX1, exp(−εX2),
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e3, . . . , em), X1 ∈ g1, X2 ∈ g2, B1(X1, X1) = B2(X2, X2) = 1, ε > 0 is suffi-
ciently small. We have

dp(a, b1) = dp(a, c1) = ε, dp(b1, c1) = 2
1
p ε,

dp(a, b2) = dp(a, c2) = 2
1
p ε, dp(b2, c2) = 2ε.

Now choose the midpoints x1 = (exp ε
2X1, exp

ε
2X2, e3, . . . , em) ∈ [b1, c1] and

x2 = (exp εX1, e2, . . . , em) ∈ [b2, c2], we get

(6.1) dp(a, x1) =
1

2
· 2

1
p ε, dp(a, x2) = ε.

In the comparison triangles △̄1(ā, b̄1, c̄1) and △̄2(ā, b̄2, c̄2), a direct calculation
shows

(6.2) |āx̄1| = ε

√
1− (

1

2
· 2

1
p )2, |āx̄2| = ε

√
(2

1
p )2 − 1.

Combing (6.1) and (6.2), we obtain dp(a, x1) > |āx̄1|, 1 ≤ p < 2,
dp(a, x1) = |āx̄1|, p = 2,
dp(a, x1) < |āx̄1|, p > 2,

and  dp(a, x2) < |āx̄2|, 1 ≤ p < 2,
dp(a, x2) = |āx̄2|, p = 2,
dp(a, x2) > |āx̄2|, p > 2.

Clearly, if p ̸= 2, (G, dp) is neither non-positively curved nor non-negatively
curved. □
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