• Title/Summary/Keyword: high doping concentration

Search Result 249, Processing Time 0.026 seconds

The Influence of Silicon Doping on Electrical Characteristics of Solution Processed Silicon Zinc Tin Oxide Thin Film Transistor

  • Lee, Sang Yeol;Choi, Jun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.103-105
    • /
    • 2015
  • Effect of silicon doping into ZnSnO systems was investigated using solution process. Addition of silicon was used to suppress oxygen vacancy generation. The transfer characteristics of the device showed threshold voltage shift toward the positive direction with increasing Si content due to the high binding energy of silicon atoms with oxygen. As a result, the carrier concentration was decreased with increasing Si content.

Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) Imide Based Electrolytes as a Function of Lithium Bis(trifluoromethanesulfonyl) Imide Doping

  • Kim, Jae-Kwang;Lim, Du-Hyun;Scheers, Johan;Pitawala, Jagath;Wilken, Susanne;Johansson, Patrik;Ahn, Jou-Hyeon;Matic, Aleksandar;Jacobsson, Per
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • In this study we have investigated the Li-ion coordination, thermal behavior and electrochemical stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ($Py_{14}TFSI$) with lithium bis(trifluoromethanesulfony)imide (LiTFSI) doping intended for use as electrolytes for lithium batteries. The ionic conductivity is reduced and glass transition temperature ($T_g$) increases with LiTFSI doping concentration. Also, the electrochemical stability increases with LiTFSI doping. A high LiTFSI doping could enhance the electrochemical stability of electrolytes for lithium batteries, whereas the decrease in the ionic conductivity limits the capacity of the battery.

Properties of the Amorphous Silicon Microbolometer using PECVD (PECVD 이용한 비정질 실리콘형 마이크로 볼로미터 특성)

  • Kang, Tai Young;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.19-23
    • /
    • 2012
  • We report microbolometer characteristic with n-type and p-type amorphous silicon thin film. The n-type and p-type amorphous silicon thin films were made by PECVD. The electrical properties of n-type and p-type a-Si:H thin films were investigated as a function of doping gas flow rate. The doping gas used $B_2H_6/Ar$ (1:9) and $PH_3/Ar$ (1:9). In general, the conductivity of doping a-Si:H thin films increased as doping gas increase but the conductivity of a-Si:H thin films decreased as the doping gas increase because doping gas concentration increase led to dilution gas (Ar) increase as the same time. We fabricated an amorphous silicon microbolometer using surface micromachining technology. The fabricated microbolometer had a negative TCR of 2.3%. The p-type microbolometer had responsivity of $5{\times}10^4V/W$ and high detectivity of $3{\times}10^8cm(Hz)^{1/2}/W$. The p-type microbolometer had more detectivity than n-type for less noise value.

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

Analysis of Current Characteristics Determined by Doping Profiles in 3-Dimensional Devices (3차원 구조 소자에서의 doping profile에 따른 전류 특성 분석)

  • Cho, Seong-Jae;Yun, Jang-Gn;Park, Il-Han;Lee, Jung-Hoon;Kim, Doo-Hyun;Lee, Gil-Seong;Lee, Jong-Duk;Park, Byung-Gook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.475-476
    • /
    • 2006
  • Recently, the demand for high density MOSFET arrays are increasing. In implementing 3-D devices to this end, it is inevitable to ion-implant vertically in order to avoid screening effects caused by high silicon fins. In this study, the dependency of drain current characteristics on doping profiles is investigated by 3-D numerical analysis. The position of concentration peak (PCP) and the doping gradient are varied to look into the effects on primary current characteristics. Through these analyses, criteria of ion-implantation for 3-D devices are established.

  • PDF

Ultra-fast Generic LC-MS/MS Method for High-Throughput Quantification in Drug Discovery

  • Kim, So-Hee;Yoo, Hye Hyun;Cha, Eun-Ju;Jeong, Eun Sook;Kim, Ho Jun;Kim, Dong Hyun;Lee, Jaeick
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.47-50
    • /
    • 2013
  • An ultra-fast generic LC-MS/MS method was developed for high-throughput quantification of discovery pharmacokinetic (PK) samples and its reliability was verified. The method involves a simple protein precipitation for sample preparation and the analysis by ultra-fast generic LC-MS/MS with the ballistic gradient program and selected reaction monitoring (SRM) mode. Approximately 290 new chemical entities (NCEs) (over 10,000 samples) from 5 therapeutic programs were analyzed. The calibration curves showed good linearity in the concentration range of 1, 2 or 5 to 2000 ng/mL. No significant ion suppression was observed in the elution region of all the NCEs. When approximately 300 plasma samples were continuously analyzed, the peak area of internal standard was constant and reproducible. In the repeated analysis of samples, the plasma concentrations and the area under the curve (AUC) were consistent with the results from the first analysis. These results showed that the present ultra-fast generic LC-MS/MS method is reliable in terms of selectivity, sensitivity, and reproducibility and could be useful for high-throughput quantification and other bioanalysis in drug discovery.

Temperature-dependent Characteristics of Discharge in AC-PDP (교류형 PDP의 온도에 따른 방전특성)

  • Kim, Gun-Su;Lee, Seok-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.239-247
    • /
    • 2009
  • In AC-PDP, it is necessary to achieve high luminance efficacy, high luminance and high resolution by adopting technologies such as high Xenon concentration, MgO doping, and long gap. However, it is very difficult to apply above technologies because they reduce driving voltage margin. For example, doping of MgO reduces driving voltage but introduces new problems such as increased temperature dependency of discharge, which result in larger variations in driving margin at different temperatures. In this paper, we present the experimental results of the characteristics of temperature-dependent discharges. In addition, we suggest the mechanism of bright noise, black noise, and high temperature mis-discharge, which depend on temperature-dependent characteristics of MgO.

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

Luminescence of $Eu^{3+}$ and $Sm^{3+}$ Doped Potassium Tungstate Phosphor

  • Lee, Gwan-Hyoung;Kim, Tae-Hyung;Kang, Shin-Hoo
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.25-29
    • /
    • 2005
  • The luminescent properties of $Eu^{3+}$ and $Sm^{3+}$ doped potassium tungstate phosphor are investigated. The $K_{4-3x}(WO_4)_2:Eu^{3+}\;_x,Sm^{3+}\;_y$ phosphor is produced by firing the mixed precursors, followed by re-firing with a flux. The re-firing process results in the defect-free surface and uniform growth of the particles. The strong absorption in the region of ultra violet light is observed due to the 4f-4f electron transitions of the $Eu^{3+}$ and $Sm^{3+}$ ions. The doping concentration of europium into potassium tungstate is relatively high, compared to other host materials. It is revealed that the crystal structure is a monoclinic with space group, C2/c. This crystal structure facilitated the $Eu^{3+}$ ions to be located with the Eu-Eu distance larger than 5 ${\AA}$ so that concentration quenching does not occur even at high doping concentration. The excitation spectrum could be adjusted by the introduction of the samarium. A small amount of the $Sm^{3+}$ ions that acts as a sensitizer increases the energy absorption peak around 405 nm.

Influence of the Fluorine-doping Concentration on Nanocrystalline ZnO Thin Films Deposited by Sol-gel Process

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.2-204.2
    • /
    • 2013
  • Wide band gap II-VI semiconductors have attracted the interest of many research groups during the past few years due to the possibility of their applications in light-emitting diodes and laser diodes. Among the II-VI semiconductors, ZnO is an important optoelectronic device material for use in the violet and blue regions because of its wide direct band gap (Eg ~3.37 eV) and large exciton binding energy (60 meV). F-doped ZnO (FZO) and undoped ZnO thin films were grown onto quartz substrate by the sol-gel spin-coating method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0 to 5 in 1 steps. To investigate the effects of the structure and optical properties of FZO thin films were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL). In the XRD, the residual stress, FWHM, bond length, and average grain size were changed with increasing the doping concentration. For the PL spectra, the high INBE/IDLE ratio of the FZO thin films doping concentration at 1 at.% than the other samples.

  • PDF