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Short Channel Analytical Model for High Electron
Mobility Transistor to Obtain Higher Cut-Off
Frequency Maintaining the Reliability of the Device
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Abstract—A comprehensive short channel analytical
model has been proposed for High Electron Mobility
Transistor (HEMT) to obtain higher cut-off
frequency maintaining the reliability of the device.
The model has been proposed to consider
generalized doping variation in the directions
perpendicular to and along the channel. The effect of
field plates and different gate-insulator geometry (T-
gate, etc) have been considered by dividing the area
between gate and the high band gap semiconductor
into different regions along the channel having
different insulator and metal combinations of
different thicknesses and work function with the
possibility that metal is in direct contact with the
high band gap semiconductor. The variation
obtained by gate-insulator geometry and field plates
in the field and channel potential can be produced by
varying doping concentration, metal workfunction
and gate-stack structures along the channel. The
results so obtained for normal device structure have
been compared with previous proposed model and
numerical method (finite difference method) to prove
the validity of the model.
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I. INTRODUCTION

An InGaAs/InAlAs high electron mobility transistor
(HEMT) on InP substrate has shown the excellent high
speed characteristics due to the enhanced electron’s
mobility and  the
discontinuity. Ever since its introduction the challenges

increased conduction band
among the researchers are to increase the reliability of
the device without finding the middle ground for the
operating speed of the device. Several approaches have
been proposed for MOSFET, MESFET, HEMT etc
following different criterion for reliability, speed and
their applications. Among them the most common
approaches are variation of doping concentration,
variation of metal workfunction, gate-stack variation
and the variation of gate-insulator geometries or field
plates engineering [1-33]. The T-gate geometry has
generally been used for higher cut-off frequency
performance due to the use of upper and lower gate
electrode offering lower gate resistance and capacitance
to the device [33-45]. The enhancement of these
variations includes improved breakdown voltage,
current voltage swing, linearity, efficiency, stability,
reliability by suppressing phenomenon, namely surface
traps effects, hot-carriers effects, current collapse, gate
leakage, junction leakage, subthreshold leakage and DC-
to-RF dispersion.

To study all these devices a generalized short channel
model has been proposed in this paper considering
doping variation in the directions perpendicular and
along the channel, where region between gate and the
high band gap semiconductor is divided into different
regions along the channel having different insulator and
metal combinations of different thicknesses and work
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function considering the possibility that metal may be in
direct contact with the high band gap semiconductor.
From this model we have discuss L-gate, ['-gate, T-gate,
Inverse-T (IT) gate and normal recess gate structures.
Similar variation in the field and channel potential can
be produced by varying doping concentration, gate-
stack variation and metal workfunction along the
channel. The results so obtained for normal device
structure have been compared with previous proposed
mode! and numerical simulation (Finite Difference
Method) to prove the validity of the model.

I1. SHORT-CHANNEL THRESHOLD
VOLTAGE MODEL

Fig. 1 shows the cross-sectional view of HEMT
structure together with conduction band diagram for the
case of mobile carriers. Basic HEMT structure used in
the analysis consists of undoped InGaAs layer to form
the 2DEG channel; an InAlAs Si-doped layer followed
by gate-insulator geometry. The gate geometry is such
that the portion between the gate and semiconductor is
divided into my-regions along the channel having
different insulator (g) and metal combinations of
different thicknesses (7) and work function (¢)
considering the possibility that metal may be in direct
contact with the high band gap semiconductor.
Furthermore, the high band gap semiconductor has been
divided into m;xn; regions having different doping
concentration along the channel and to the depth of the
semiconductor. To include the HEMT structure the
raised potential (A) is considered at the heterointerface
[47] and is given by

A=AE —k (1)

in which, AE, is the conduction band discontinuity
and k; is the subthreshold factor arises due to
quantization of carriers at the heterointerface.

1. Two-dimensional Potential Analysis
Short-channel effects can be modeled by solving the

two-dimensional potential distribution in the fully
depleted Indlds layer (Fig. 1) from the 2-D Poisson
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Fig. 1. Cross-sectional view of different Gate-Insulator
Geometric Discretized doped High Electron Mobility
Transistor along with various device structures showing
variation of gate-insulator geometry, doping variation, gate-
stack variation and work function variations.
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in which ¢ is the surface potential at the oxide-
semiconductor interface and is given by

4,

= VGS _¢ms p

+V,|p

where ¢

s is the workfunction difference between

bulk semiconductor and the gate electrode,

= -l
V1|p[ (Zszd1+N (dTAzldijj] is the voltage drop
u I i=

i=1

across the insulator. g and & is the dielectric
permittivity of IndlAs and insulator; Vs and Vpyg is the
gate voltage and drain voltage; ¥ (x, y) is the 2-D
potential distribution and p (x, y) is the charge density
distribution given by

0<x<L

L SxSLS+Zp:LG|i
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J

The solution of the 2-D Poisson’s equation in a finite
region can be obtained by means of Green’s theorem [48].

W(xay) = J'G(xaysx'ayv)-M.dV'+

£,

j[G(x,y, LTy, V)Jd 6)

where (x, y) and (x) y’) denotes the field and source
point coordinates, respectively; G is the Green’s
function and is given by

G(x,y,x',7") = sz [k,(y—d,)]sin[k,.(y'~d;)].Fy (x, %",k )
G(x,y,x',y") Zsm(k x).sin(k,, .x").F,; (v, y".k,)
(6)

where F;(x, x’, k,) and F (y, y’, k,,) are
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1 y’y9 nt Slnh(knnxv)'Slnh[kn'(L_x)] x>x'
k,.sinh(k,.L)
cosh(k,.y).sinh [k, (d; — "] y<y'
Py k) k,.cosh(k,.d;)
1T coshik,, Y. sinh [k, (dy )] -
k,.cosh(k,.d,) i
(7)

1\« m.Jr h 2
k =|n—=|—rk,=——> WHeI® 77 4 NI | +L
A S,

and d, = idi , n and m are integers and are greater than
i=1

zero and. Substituting (7) into (5) and solving, we obtain
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where y(x', y') and represent the potential

a '
and normal electric field at the boundaries. The
corresponding values of integrals are given in
Appendix-A4.

IT1. CUT-OFF FREQUENCY MODEL

Drain current in Region-z for linear region of device
operation is given by [49-51]

PELCTR PA (U] SRR ©)
: Csz (Lz+#0(l/‘1)z_llt72)J

5

where z =1 to m; (m;=3) and
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W) =(Bk) +4B.(1+ B) (Ve =V,

~k~V.~I,R)
in which A, =-fk,>B, :2(1+ﬂzk3) > C, =48, (1+/sz3) and

the values of ¥, and ¥, for various regions are (m,=3)

V]] = V1 and V()] = O(Region-l)
Vo= V,and Vy, = V(Region-11)
Vis= Vg - Lss (Rs + Ry) and Vs = Vy(Region-I1I)
(10)

£, .85
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Iz

is the threshold

z

voltage for Region-m; of planar doped structure and can
be expressed as
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<
2.¢,.8, d £,.8,

a

2
=4, A M(&d_jw_fik
(11)

For current continuity in these regions, current
flowing through all the regions is same i.e.

Ids

lzldsz :Ids

=1, (12)

the expression of drain current for generalized gate
geometry can be obtained by using (9), (10), (11) and
(12). The variation can be considered by altering the
doping concentration or dielectric constant of the
insulator or thickness of the insulator (for gate insulator
geometry) or workfunction of the metal in various
regions.

Capacitance Model
The charge associated with the gate terminal in
Region-z is given as

Qg‘f“QrLWWL]ns(x)lzdx (13)

where x is any position along the channel relative to the
source side (x=0) and for pulsed doped
structure in =qWLN,W . As n, is related to the channel

potential so the integral in (13) is first transformed into

channel potential by using the expression of drain
current

1, =qWn, (x)lz 2
Now using the following velocity field relationship

HE

if E<E,

yOEC l:f EZEC

in the linear region

dx=| Dt 1y
I, E

[
and on solving, we get

aW n, V)|, &, _i}n/ (14)
1 E,
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The corresponding gate-source capacitance is given
by

_ZaW o, O
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and gate-drain capacitance is given by
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_ﬂh

Cul. = =77 av,| (ADool- Ay -
CL [y (W)ldy(@v.)+ €., [y, D] dv(dv. ) (16)
Where

ay(dV)=-dV —-g R,

The resultant gate to source and gate-drain
capacitance can be represented as series and parallel
combination of insulator (C;;, Cp,and Cp3) and depletion
capacitances (Cg;, Crr and Cgsz) (Cgl, and Cg,) in

various regions as shown in Fig. 2 and is simplified as

’ng] — CrC CrCrs CrsCrs a7
! TG+ Cy Cp+Ghy Cpy+Cy

8s

t
. - gogl LZ + E W
in which c, :_'(I—é) [1 and C,, , C,, and
I

[z

C,, can be easily found by using (15), (16) and (17).

Cut-off frequency
The cut-off frequency of the device can be obtained

by

fr= En
27(C, |, +Cul,) (18)

where g, is the transconductance of the device and can
be calculated by differentiating (12) with respect to gate
voltage at constant drain voltage.

IT1. RESULTS AND DISCUSSION

Different gate-insulator geometries, doping variation,
gate-stack variation and using combination of metal gate
electrode having different workfunction has widely been
used for improving device performance and reliability
of the device. To study all these devices a generalized
short channel model has been proposed in this paper.
From this model different gate-insulator geometry like
L-gate, I'-gate, T-gate, Inverse-T gate and normal recess
gate structures (as shown in Fig. 1) has been discussed.
Similar variation in the field and channel potential can
be produced by varying doping concentration, metal
workfunction along the channel and gate-stack variation

Cr1

Cr2
Source ate
Or Drain

Crs

Fig. 2. Equivalent capacitance model for' different gate
insulator geometries.

Table 1. Value of parameters used in the analysis

Parameters Value Parameters Value

d; 20A Y4 t,, Variable

d: 100 A & &, ,Variable

ds 100 A & & ,Variable

N; Undoped ¢, [Low] . 02eV

N Na, &, [High) . 04evV
Variable - :

N; Undoped & [Low] ©3.9 [Si04]

N, [High] 3x10%m? & [High] 27.5 [SizNy]

Ny [Low] 2 x 10 m? t{Low] Zero

L, 0.25um #; [High] 200 A

" 1 m?/V-sec o 33 x 10°

m/sec. ’
R, 03Q Ry 1Q
w 50 pm

along the channel. All these structure’ have . been
compared at constant upper gate length divided into
three equal regions (m;=3) to produce various gate
geometries as shown in Fig. 1 and pulsed doped
structure (n;=3) has been considered. The parameters
used for the analysis are tabulated in Table.1. -

The DIBL effect and variation of threshold Voltage
have been studied for gate-insulator geometries-through
Fig. 3. The variation of channel potential with
normalized distance along the channel for various gate-
insulator geometries (N-Gate, L-gate, I'-gate, T-gate and
IT-gate) for two different channel length (O.lum and
0.25pm) and drain voltages (OV and 2.0V) have been
plotted in Fig. 3. Similar variation has been found for
gate-stack variation, doping concentration variation and
metal workfunction variation. All these variation have
been compared with numerical simulation (Finite
Difference Method) under similar boundary conditions
to prove the validity of our model. The results so
obtained from the numerical simulation and from the
analysis are found in excellent agreement with each
other. Comparing the results of minimum- channel
potential for 0.1um and 0.25um gate length from Fig. 3
(a & b) for normal gate structure, it is found that the
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Fig. 3. Variation of channel potential with normalized distance
along the channel for various gate-insulator geometries (N-
Gate, L-gate, I'-gate, T-gate and IT-gate) for two different

channel length (0.1pm and 0.25pm) and drain voltages (0V
and 2.0V).

device having gate length of 0.1pm (L/d =4.545) have
DIBL effects whereas it is completely missing in device
with gate length of 0.25um (L/d =11.364). It can also be
seen from Fig .3 (a) that device having gate-insulator
geometry of IT-gate or T-gate have raised minimum
potential for gate length of 0.25um thereby increasing
the threshold voltage of the device even at zero drain
bias. Figure also shows that these devices have no
variation with drain voltage. So we can say that these
devices do not suffer from DIBL effects but have
threshold voltage increment in the case for 2D analysis
as compared to 1D analysis. Increasing the length of the
device completely eliminated this effect. Thus we can
say that using geometries like IT-gate and T-gate
increases the L/d ratio for correct estimation of
threshold voltage from 1D analysis. Decreasing the gate
length to 0.1pm increases this effect (Fig. 3(b)).
Furthermore, this effect can also be seen in the case of
L-gate and I'-gate geometries. Figure also shows that the
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Fig. 4. (a)Variation of Electric Field with normalized distance
along the channel for various gate-insulator geometries (N-
Gate, L-gate, I'-gate, T-gate and IT-gate) for channel length of
0.1pm and drain voltages (0V and 2.0V).

I'-gate structure has reduced DIBL effects in
comparison to normal gate structure; T-gate has also
reduced DIBL effect but not more in comparison to I'-
gate; IT-gate has completely eliminated this effect; L-
gate has increased DIBL effect in comparison to normal
gate structure. But in all the cases, minimum channel
potential is found to be raised in comparison to normal
gate structure even at zero drain bias and has different
value of threshold voltage predicted from 1D analysis
and 2D analysis.

The influence of these variations on hot-carriers
effects has been discussed in Fig. 4 where variation of
electric field has been plotted under the gate with
normalized distance along the channel. The maximum
value of electric field can be seen at the edges of the
gate electrode for normal gate structure for zero drain
voltage. With the increase in drain voltage the
maximum value of electric field increases at the drain
edge keeping constant value at the source end. The
maximum value of electric field in the channel depends
on the field at the surface and the doping concentration
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of the device leading to this channel, whereas the field
at the surface depends on the doping concentration at
the surface, thickness and properties of the insulator and
metal workfunction. Electric field at the source end
depends on the gate voltage of the device and has no
influence of drain voltage. So for designing the device
for higher ON-state breakdown voltage engineering at
drain end is necessary, whereas for designing the device
for higher OFF-state breakdown voltage designing at
both the ends are necessary. The variation of electric
field for L-gate geometry clearly shows the decrease in
electric field at the source end but have same value at
drain end in comparison to the normal gate structure.
The I'-gate geometry shows the decrease in the
maximum value of electric field at the drain end in
comparison to the normal gate structure. T-gate
structure shows decrease in the maximum electric field
at both source and drain end. Inverse T-gate also shows
the decrease in maximum value of electric field at both
the ends but lesser in comparison to T-gate and I'-gate
and only at shorter gate length. Increasing the gate
length gives overlapped electric field characteristics
with normal gate structures. Thus T-gate and I'-gate are
only geometries useful for decreasing the hot carriers
effects. T-gate can be used for enhancing the
characteristics for both ON-state and OFF-state
conditions whereas I'-gate can only be used for
enhancing the characteristics for ON-state conditions.
Similar effects can be seen from the variation of gate-
stack [Fig. 4(b)] or by variation of metal workfunction
or doping concentration variation for L-shape, I'-shape,
T-shape and IT-shape profile. The only difference in
characteristics is that doping concentration variation
affects the field upto the channel, whereas gate-insulator
geometry, gate-stack variation and metal workfunction
affected the surface of the semiconductor and the effect
will be passing on to the channel. Further enhancement
in the characteristics can be expected by choosing
combination of gate-insulator variation with gate-stack
variation or metal workfunction variation or doping
concentration variation or combination of all depending
on the choice of other parameters.

The influence of these variations on speed of the
device has been discussed in Fig. 4 where variation of
cut-off frequency, gate capacitance and transconductance has
been plotted with gate voltage. Increasing the doping
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Fig. 5. (a) Variation of Gate Capacitance with gate voltage for
various Gate-insulator geometries and Gate-stack (N-Gate, I'-
gate and T-gate) for channel length of 0.25um. (b) Variation
of Transconductance with gate voltage for various Gate-
insulator geometries and Gate-stack (N-Gate, I'-gate and T-
gate) for channel length of 0.25pm. (c). Variation of Cut-off
Frequency with gate voltage for various Gate-insulator
geometries and Gate-stack (N-Gate, I'-gate and T-gate) for
channel length of 0.25um.

concentration at the drain end at Metal-semiconductor
interface, decreases the field at the surface of the
semiconductor but eventually decrease the mobility of
the device in the enhancement mode device as channel
is formed at the surface of the semiconductor. Whereas
in the buried channel device or HEMT device the
surface doping has negligible influence on mobility but
have same influence of the electric field in the channel.
But even ignoring the effect of mobility variation in the
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semiconductor such variation will not give rise to
enhance characteristics as it increases the gate-
capacitance of the device with transconductance, which
will lead to same value of cut-off frequency. The depth
of the doping causes the increase in transconductance
and gate-capacitance in the same proportion with the
increased effect of mobility degradation (for non
heterostructure devices). Similar effect can be seen by
comparing the characteristics of metal workfunction
variation except for the effect of mobility degradation.
But due to insulator capacitance in series with
semiconductor capacitance, as in the case of gate-
insulator geometries and gate-stack variation, causes
decrease in the equivalent gate capacitance of the device
with increased transconductance, which will lead to
increased cut-off frequency. So  gate-insulator
geometries and gate-stack variation is the more useful
variation as far as speed of the device is concerned and
has been analyzed through Fig. 5. The maximum values
of cut-off frequency obtained from the analysis are
176GHz, 111GHz and 82GHz for T-gate-insulator
geometry, I'-gate-insulator geometry and Normal-gate
geometry HEMT respectively whereas 127GHz, 96GHz
and 81GHz for T-shape gate-stack, I'- shape gate-stack
and Normal-gate-stack MISHEMT.

IV. CONCLUSIONS

A comprehensive short channel analytical model has
been proposed in this paper considering device having
generalized doping variation in both directions with the
channel, where area between gate and the high band gap
semiconductor is divided into different regions along the
channel having different insulator and metal
combinations of different thicknesses and work function
considering the possibility that metal may be in direct
contact with the high band gap semiconductor. From
this model we have discuss L-gate, I'-gate, T-gate,
Inverse-T gate and normal recess gate structures to
obtain higher cut-off frequency maintaining the
reliability of the device for same channel length. Similar
variation in the field and channel potential can be
produced by varying doping concentration, metal
workfunction and gate-stack structures along the
channel. The results so obtained for normal device

structure have been compared with previous proposed

model and numerical method (finite difference method)
to prove the validity of the model. From the analysis it is
found that such variations suppress the DIBL effect but
eventually raises the minimum channel potential in
comparison to normal gate structure even at zero drain
voltage thereby increasing the threshold voltage of
whole device in comparison to 1D threshold voltage of
the device, thus creating the need of 2D analysis. I'-gate
variation is useful for enhancing the ON-state
breakdown voltage, whereas T-gate is useful for
enhancing both the ON-state and OFF-state breakdown
voltage of the device. Doping variation affects the
device from surface of the semiconductor to the channel
whereas the gate-insulator variation or the gate-stack
variation or the metal workfunction variation only affect
the surface of the semiconductor and the effect have
been passed on to the channel. Gate-stack variation and
gate-insulator geometry variation increases the cut-off
frequency of the device by decreasing the gate-
capacitance and increasing the transconductance of the
device whereas for metal workfunction variation and
doping concentration variation the value of cut-off
frequency is found to be the same or lesser in

comparison to normal structure.
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