Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.1.1

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties  

Dakhel, Aqeel Aziz (Department of Physics, College of Science, University of Bahrain)
Jaafar, Adnan (Department of Physics, College of Science, University of Bahrain)
Publication Information
Korean Journal of Materials Research / v.30, no.1, 2020 , pp. 1-7 More about this Journal
Abstract
Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.
Keywords
CdTe-doped CdO; CdO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Jaklevic and F. S. Goulding, Energy Dispersion in X-ray Spectrometry, p.50, ed. H. K. Herglotz and L. S.Birks, NY: M. Dekker (1978).
2 A. A. Dakhel and H. Hamad, Int. J. Thin Films Sci. Technol., 1, 25 (2012).
3 A. A. Dakhel, Chem. Phys., 130, 398 (2011).
4 A. A. Dakhel, J. Mater. Sci.: Mater. Electron., 29, 3584 (2018).   DOI
5 L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer and P. Scardi, J. Appl. Cryst., 32, 36 (1999).   DOI
6 A. Khorsand Zak, W. H. Abd Majid, M. E. Abrishami and R. Yousefi, Solid State Sci., 13, 251 (2011).   DOI
7 J. Tauc and F. Abelesn ed., Optical Properties of Solids, North Holland (1969).
8 J. I. Pankove, Optical processes in semiconductors, p. 36, NY: Dover (1975).
9 Y. Z. Zhang, J. G. Lu, Z. Z. Ye, H. P. He, L. P. Zhu, B. H. Zhao and L. Wang, Appl. Surf. Sci., 254, 1993 (2008).   DOI
10 Y. Dou, R. G. Egdell, T. Walker, D. S. L. Law and G. Beamson, Surf. Sci., 398, 241 (1998).   DOI
11 M. Chen, Z. L. Pei, X. Wang, Y. H. Yu, X. H. Liu, C. Sun and L. S. Wen, J. Phys. D: Appl. Phys., 33, 2538 (2000).   DOI
12 B. G. Lewis and D. C. Paine, Mater. Res. Soc. Bull., 25, 22 (2000).
13 M. Yan, M. Lane, C. R. Kannewarf and R. P. H. Changa, Appl. Phys. Lett., 78, 2342 (2001).   DOI
14 Powder Diffraction File, Joint Committee for Powder Diffraction Studies (JCPDS) file No. 05-0640.
15 Z. Zhao, D. L. Morel and C. S. Ferekides, Thin Solid Films, 413, 203 (2002).   DOI
16 K. M. A. Hussain, Z. H. Mahmood, I. M. Syed, T. Begum, T. Faruqe1 and J. Parvin, Am. J. Mater. Sci. Application, 2, 91 (2014).
17 P. K. Gupta, K. Ghosh, R. Patel, S. R. Mishra and P. K. Kahol, Curr. Appl. Phys., 9, 673 (2009).   DOI
18 A. A. Dakhel, Adv. OptoElectron., 2013, 6 (2013).   DOI
19 A. A. Dakhel, Thin Solid Films, 41, 2405 (2012).
20 F. V. Wald, Revue de Physique Appliquee, 12, 277 (1977).   DOI
21 R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., 32, 751 (1976).   DOI
22 S. Sonmezoglu, T. A. Termeli, S. Akin and I. Askeroglu, J. Sol-Gel Sci. Technol., 67, 97 (2013).   DOI
23 A. A. Dakhel, Sol. Energy, 84, 1433 (2010).   DOI
24 F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi and N. M. Hyang, Ceram. Int., 40, 7737 (2014).   DOI
25 S. Sonmezoglu and E. Akman, Appl. Surf. Sci., 318, 319 (2014).   DOI
26 T. Minami, Thin Solid Films, 516, 1314 (2008).   DOI
27 T. Ratcheva, M. Nanova, L. Kinova and I. Penev, Thin Solid Films, 202, 243 (1991).   DOI
28 B. Georgieva, I. Podolesheva, G. Spasov and J. Pirov, Sensors (Basel), 14, 8950 (2014).   DOI