• Title/Summary/Keyword: harmonic manifolds

Search Result 68, Processing Time 0.022 seconds

SOME EINSTEIN PRODUCT MANIFOLDS

  • Park, Joon-Sik;Moon, Kyung-Suk
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.235-243
    • /
    • 2002
  • In this paper, we get conditions for the natural projections of some product manifolds with varying metrics of two Riemannian manifolds to be harmonic, and necessary and sufficient conditions for some product manifolds with the harmonic natural projections of two Einstein manifolds to be Einstein manifolds.

  • PDF

A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM OF V-HARMONIC MAPS

  • Zhao, Guangwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1327-1340
    • /
    • 2019
  • We establish a monotonicity formula of V-harmonic maps by using the stress-energy tensor. Use the monotonicity formula, we can derive a Liouville type theorem for V-harmonic maps. As applications, we also obtain monotonicity and constancy of Weyl harmonic maps from conformal manifolds to Riemannian manifolds and ${\pm}holomorphic$ maps between almost Hermitian manifolds. Finally, a constant boundary-value problem of V-harmonic maps is considered.

TRANSVERSE HARMONIC FIELDS ON RIEMANNIAN MANIFOLDS

  • Pak, Jin-Suk;Yoo, Hwal-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.73-80
    • /
    • 1992
  • We discuss transverse harmonic fields on compact foliated Riemannian manifolds, and give a necessary and sufficient condition for a transverse field to be a transverse harmonic one and the non-existence of transverse harmonic fields. 1. On a foliated Riemannian manifold, geometric transverse fields, that is, transverse Killing, affine, projective, conformal fields were discussed by Kamber and Tondeur([3]), Molino ([5], [6]), Pak and Yorozu ([7]) and others. If the foliation is one by points, then transverse fields are usual fields on Riemannian manifolds. Thus it is natural to extend well known results concerning those fields on Riemannian manifolds to foliated cases. On the other hand, the following theorem is well known ([1], [10]): If the Ricci operator in a compact Riemannian manifold M is non-negative everywhere, then a harmonic vector field in M has a vanishing covariant derivative. If the Ricci operator in M is positive-definite, then a harmonic vector field other than zero does not exist in M.

  • PDF

VANISHING PROPERTIES OF p-HARMONIC ℓ-FORMS ON RIEMANNIAN MANIFOLDS

  • Nguyen, Thac Dung;Pham, Trong Tien
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1103-1129
    • /
    • 2018
  • In this paper, we show several vanishing type theorems for p-harmonic ${\ell}$-forms on Riemannian manifolds ($p{\geq}2$). First of all, we consider complete non-compact immersed submanifolds $M^n$ of $N^{n+m}$ with flat normal bundle, we prove that any p-harmonic ${\ell}$-form on M is trivial if N has pure curvature tensor and M satisfies some geometric conditions. Then, we obtain a vanishing theorem on Riemannian manifolds with a weighted $Poincar{\acute{e}}$ inequality. Final, we investigate complete simply connected, locally conformally flat Riemannian manifolds M and point out that there is no nontrivial p-harmonic ${\ell}$-form on M provided that the Ricci curvature has suitable bound.

HARMONICITY OF ALMOST NORDEN SUBMERSIONS BETWEEN ALMOST NORDEN MANIFOLDS

  • Gupta, Garima;Kumar, Rakesh;Rani, Rachna;Sachdeva, Rashmi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.375-395
    • /
    • 2022
  • We define an almost Norden submersion (holomorphic and semi-Riemannian submersion) between almost Norden manifolds and show that, in most of the cases, the base manifold has the similar kind of structure as that of total manifold. We obtain necessary and sufficient conditions for almost Norden submersion to be a totally geodesic map. We also derive decomposition theorems for the total manifold of such submersions. Moreover, we study the harmonicity of almost Norden submersions between almost Norden manifolds and between Kaehler-Norden manifolds. Finally, we derive conditions for an almost Norden submersion to be a harmonic morphism.

ON THE ADAPTED CONNECTIONS ON KAEHLER-NORDEN SILVER MANIFOLDS

  • Mohammad, Sameer;Pandey, Pradeep Kumar
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.701-715
    • /
    • 2021
  • In this paper, we study almost complex Norden Silver manifolds and Kaehler-Norden Silver manifolds. We define adapted connections of first, second and third type to an almost complex Norden Silver manifold and establish the necessary and sufficient conditions for the integrability of almost complex Norden Silver structure. Moreover, we investigate that a complex Norden Silver map is a harmonic map between Kaehler-Norden Silver manifolds.

POLYNOMIAL GROWTH HARMONIC MAPS ON COMPLETE RIEMANNIAN MANIFOLDS

  • Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.521-540
    • /
    • 2004
  • In this paper, we give a sharp estimate on the cardinality of the set generating the convex hull containing the image of harmonic maps with polynomial growth rate on a certain class of manifolds into a Cartan-Hadamard manifold with sectional curvature bounded by two negative constants. We also describe the asymptotic behavior of harmonic maps on a complete Riemannian manifold into a regular ball in terms of massive subsets, in the case when the space of bounded harmonic functions on the manifold is finite dimensional.

ON THE BEHAVIOR OF L2 HARMONIC FORMS ON COMPLETE MANIFOLDS AT INFINITY AND ITS APPLICATIONS

  • Yun, Gabjin
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.205-212
    • /
    • 1998
  • We investigate the behavior of $L^2$ harmonic one forms on complete manifolds and as an application, we show the space of $L^2$harmonic one forms on a complete Riemannian manifold of nonnegative Ricci curvature outside a compact set with bounded $n/2$-norm of Ricci curvature satisfying the Sobolev inequality is finite dimensional.

  • PDF