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POLYNOMIAL GROWTH HARMONIC MAPS
ON COMPLETE RIEMANNIAN MANIFOLDS

YoNG HaH LEE

ABSTRACT. In this paper, we give a sharp estimate on the cardi-
nality of the set generating the convex hull containing the image
of harmonic maps with polynomial growth rate on a certain class
of manifolds into a Cartan-Hadamard manifold with sectional cur-
vature bounded by two negative constants. We also describe the
asymptotic behavior of harmonic maps on a complete Riemannian
manifold into a regular ball in terms of massive subsets, in the case
when the space of bounded harmonic functions on the manifold is
finite dimensional.

1. Introduction

In 1975, Yau [32] proved the Liouville property on a complete Rie-
mannian manifold with nonnegative Ricci curvature, i.e., every positive
harmonic function on such a manifold must be constant. Later, Cheng
gave a generalization of the result of Yau for harmonic maps. In [3],
he proved that if a harmonic map from a complete Riemannian mani-
fold with nonnegative Ricci curvature to a Cartan-Hadamard manifold
is contained a bounded set, then the map is constant. Recently, in a
series of papers [5]-[11], Colding and Minicozzi II proved that the space
of harmonic functions of polynomial growth of degree at most d on a
complete Riemannian manifold

HAM) = {f : Af =0, f|(x) = O(r¥(x)) as r(z) — oo}

must be finite dimensional for any d > 0, where r(x) denotes the distance
of any point x from a fixed point o in M, if the manifold M satisfies the
volume doubling condition and the Poincaré inequality as follows:
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(V) there exists a constant v > 0 such that for any z € M and 0 <
s<,

Valr) < (5)Vals),

where V;(r) denotes the volume of the geodesic ball B,.(z);
(P) there exists a constant C' > 0 such that for any z € M and r > 0,

/ 2 < on? / VP,
By (xz) Br()
where f € C*°(B,(z)) satisfying fBr(w) f=0.

Note that these properties are satisfied on a complete Riemannian man-
ifold M with nonnegative Ricci curvature. On the other hand, Li and
Wang in [26] gave the convex hull property of harmonic maps into a
Cartan-Hadamard manifold as follows:

THEOREM 1.1. Let M be a complete Riemannian manifold such that
the dimension of the space of bounded harmonic functions on M is [.
Let w: M — N be a harmonic map from M into a Cartan-Hadamard
manifold N, and A = uw(M)NN(o0), where N(o0) denotes the geometric
boundary of N and B denotes the closure of a set B in N U N(oo). If
either u is bounded, or N is two dimensional visibility manifold, or the
sectional curvature satisfies —b?> < Kxn < —a? < 0, then there exists a

set of points {qj}?zl in (M) NN with k <1 such that

u(M) C C(AU{g;}5_y),

where C(D) denotes the convex hull of a set D.

Furthermore, if the maximal number of mutually disjoint d-massive
subsets of M, explained later, is lg and uw : M — N satisfies that for
some point p € N

(1.1) dn(u(z),p) = O(r(z)?) as r(z) — oo,

then there exists a set of points {g; fil =u(M)NN(o0) withkg < ly—1
such that

u(M) C C({g; 2, U {g1hoy).

They also pointed out that the number of mutually disjoint d-massive
subsets is bounded by the dimension of the space of harmonic functions
of polynomial growth of degree at most d. Therefore, one can estimate
the cardinality of the finite set A generating the convex hull containing
the image of harmonic maps of polynomial growth of degree at most
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d by estimating the dimension of the space of harmonic functions of
polynomial growth of degree at most d.

In this paper, we consider some specific cases to get a sharp estimate
of the cardinality of such a finite set generating the convex hull contain-
ing the image of harmonic maps of polynomial growth of degree at most
d. One is the case of a connected sum of complete Riemannian mani-
folds, each of which satisfying the weak volume doubling condition and
the mean value property as follows: Let M be a complete Riemannian
manifold.

(W) there exist constants C' > 0 and v > 0 such that for any z € M
and sufficiently large 0 < s < r,

Vo(r) — Vils) < c{(g)” —1}Va(s);

(M) there exists a constant A > 0 such that for any z € M and r > 0,
any nonnegative subharmonic function f on M

A
@) < 5 /B N,

Note that the condition (W) is weaker than (V), and if a manifold
satisfies the conditions (W) and (P), then the mean value property (M)
also holds on the manifold. (See [16] or [28]). Therefore, any complete
Riemannian manifold with nonnegative Ricci curvature still satisfies the
condition (W) and (M).

THEOREM 1.2. Let M be a connected sum of complete Riemannian
manifolds M;, i = 1,2,---,1, each of which satisfies (W) and (M).
Suppose that N is two dimensional visibility manifold, or a Cartan-
Hadamard manifold with the sectional curvature satisfying < Ky<
—a? < 0. Let u: M — N be a harmonic map satisfying (1.1) for some

d > 0. Then there exist sets of points {qj};?:l inu(M)NN with k <1
and {G;}7 | in u(M) N N(oo) with kg < C(1+ Y\, d“~1) — I such that

u(M) € CH{Z: )y U {g}y),

where v; denotes the order in (W) corresponding to each M;

Another case is a complete Riemannian manifold with nonnegative
Ricci curvature outside a compact set and finite first Betti number.

THEOREM 1.3. Let M be a complete n-dimensional Riemannian man-
ifold with nonnegative Ricci curvature outside a compact set and fi-
nite first Betti number. Suppose that N is two dimensional visibility
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manifold, or a Cartan-Hadamard manifold with the sectional curvature
satisfying —b?> < Ky < —a®? < 0. Let u : M — N be a harmonic
map satisfying (1.1) for some d > 0. Then there exist sets of points
{g;}5_; in u(M) N N with k < | and {g;}’, in w(M) N N(oco) with
ke <CQA+ Yt d% 1) —1 < C(+1d™1) — 1 such that

u(M) C C({g; ¥, U {a}hy),

where [ is the number of ends of M and v; (< n) denotes the order in the

volume doubling condition corresponding to each end E;,i =1,2,--- ,1,
of M.

We also prove that if the dimension of the space of bounded harmonic
functions on a complete Riemannian manifold is [, then every harmonic
map on the manifold into a complete Riemannian manifold, whose image
lies inside a regular ball, is uniquely determined by ! points in the closure
of the image. In particular, we give a description of the asymptotic
behavior of such harmonic maps in terms of massive subsets. This result
is a generalization of Sung, Tam and Wang [30].

Finally, we treat more general cases related to the rough isometry
between complete Riemannian manifolds. To be precise, we obtain the
same result in the case when the domain manifold is roughly isometric
to the complete Riemannian manifold with nonnegative Ricci curvature
outside a compact set and finite first Betti number.

2. Bounded harmonic maps

We consider the case of bounded harmonic maps on a complete Rie-
mannian manifold into a regular ball of another complete Riemannian
manifold. We say that a ball Br(p) in a complete Riemannian manifold
N is regular if R < min{n/(2/k), injectivity radius of N at p}, where
k 2 0 is an upper bound for the sectional curvature of N. In particular,
each bounded ball in a Cartan-Hadamard manifold is the case. Actu-
ally, the asymptotic behavior of such bounded harmonic maps is closely
related to that of bounded harmonic functions. (For example, see [22]
and [30]).

We concentrate on the case that the space of bounded harmonic func-
tions on a complete Riemannian manifold is finite dimensional. In [15],
Grigor’yan proved that the maximal number of mutually disjoint massive
subsets of a complete Riemannian manifold is equal to the dimension of
the space of all bounded harmonic functions. A proper open subset 2 of
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a complete Riemannian manifold M is called a massive subset if there
exists a continuous function u on M such that

Ay = 0 in
u = 0on M\
supgu = 1.

Such a function u is called an inner potential of the massive set .

Recall the observation in [15]: Let M be a complete Riemannian
manifold and dim HB(M) = [ for some | € N, where HB(M) denotes
the space of bounded harmonic functions on M. Then by [15], there
exist mutually disjoint massive subsets Q;,{s, -+, of M, and each
{; has an inner potential u;. Fix a point oin M. Foreach j =1,2,---,1
and 7 > 0, define a continuous function h;, on B, (0) such that

Ahjﬂn = 0 in BT(O);
hjr = wu; on dB.(o0).
Then by the maximum principle, {h;,}r-¢ is a nondecreasing sequence.
In particular, its limit function A; is harmonicin M and 0 <wu; < h; < 1.
Since €2;’s are mutually disjoint, 23:1 u; < 1 on M. This implies
that 22:1 hjr <1 on B,(0), hence 23:1 h; <1 on M. We now choose
a sequence {Q7 : n € N} for each j = 1,2,---,1 such that Q} = {z €
 : hj(x) > 1—1/n}. Then Q"' C Q7 and
n—00,TE ;L
One can easily check that hy, he, -« , by are linearly independent. Hence
every bounded harmonic function on M can be represented by a linear
combination of hy, ha, -, hy.
As a consequence of the above consideration, we can describe the

asymptotic behavior of bounded harmonic functions in terms of massive
subsets as follows:

LEMMA 2.1. Suppose that dim HB(M) = for some | € N. Then for
each bounded harmonic function f, there exist real numbers ay,ag, -+ ,
a; such that for each j =1,2,--- ,1,

l
i=

where h;, §1; and €Y} are given above.

In [30], Sung, Tam and Wang proved that if every bounded har-
monic function on a complete Riemannian manifold is asymptotically
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constant at the infinity of each nonparabolic end, then every harmonic
maps whose image is contained in a regular ball is also asymptotically
constant at the infinity of each end. On the other hand, the nonparabol-
icity of an end implies that the end is a massive subset. Furthermore,
if every bounded harmonic function defined on an end is asymptoti-
cally constant at the infinity, then the end contains at most one massive
set. In this viewpoint, our setting is more general one than to assume
the asymptotically constant property of bounded harmonic functions on
each nonparabolic end.

Modifying the argument of [30], we have a similar result as in [30],
but with a different observation which is derived from the finiteness of
the number of mutually disjoint massive subsets:

LEMMA 2.2. Suppose that dimHB(M) = [ for some | € N. Let
2, and Q}‘, 7 =12--- 1, be given as in Lemma 2.1. Suppose that
g1,92, -+ , 9k are any finite set of bounded superharmonic functions on
QQ; for some j = 1,2,---,1, with lim iﬂfn—»oo,zeﬂy gi(x) =0 for all ¢ =
1,2,--- ,k. Then

W2 9 =0

where g = max{g1,92, " , 9k}

Proof. For the sake of convenience, let us denote by Q a fixed one
of the mutually disjoint massive subsets Qq,9, -+, of M. Suppose
that the lemma is not true. Then there is € > 0 such that

liminf g(z) > e.

n—o0,zEON

From this, we can choose n € N such that

i >
xlenfgn g(x) =€
and
inf g;(x) > —
Jnf, gi(x) > —e€/2k
for all i = 1,2, .- , k. By the definition of g, we get
k
3 gi(x) = e~ (k- 1)e/2k > ¢/2
i=1

for all z € Q™.

We now define a function f; » on B.(0) N Q" by Af; » = 0 in B, (0)NQ"
and f;r = g; on 0(Br(0) N Q™). Since g; is bounded on , there is a
subsequence of f;, converging uniformly on any compact subset of Q"



Polynomial growth harmonic maps 527

and its limit function f; is harmonic in Q". Since Zle fir= Zle gi >
€/2 on (B, (o) NQ"), we get Zle fir > €/2 on By(0) N Q". Thus

k
(2.1) > fi=¢€/2 on Q™.

i=1

On the other hand, since g; is superharmonic and f; is harmonic in
Q® fi < g; on Q7. In particular,
liminf fi(z) < liminf ¢;(z) =0.
n sty ) S i, i)

We claim that ‘
liminf fi(z) = limsup f;(x).

n—oo,xcd” n—00,rE"
Then we get
lim fl(x) = ;

n—00,rE0"
for some nonpositive constant a;. However, this contradicts (2.1), hence
we get the consequence.
Suppose that the claim is not true. Then we may assume that there
exist a small € > 0 and an integer » € N such that
inf fi(z)+e< sup fi(z) —e
reNn zeQn
In particular, both {z € Q" : fi(z) < infyeqn fi + €} and {z € Q™ :
fi(x) > sup,cqn fi — €} are massive subsets of Q™. Furthermore, each of
them does not intersect each other. Thus we have at least [+ 1 mutually
disjoint massive subsets of M. By [15], this contradicts the hypothesis
of the lemma. Hence we get the claim. O

Using Lemma 2.2, we can also describe the asymptotic behavior of
harmonic maps in terms of massive subsets as follows:

LEMMA 2.3. Suppose that dim HB(M) =1 for some | € N. Let Q;
and Qg‘, 3=1,2,.-- 1, begiven as in Lemma 2.1. Then for any harmonic
map u on M into a regular ball Br(p), there exist points qi,q2, - ,q
in Br(p) such that for each j =1,2,--+ ,1,

li = gq,.
- u(z) = g
Proof. Let us denote by Q a fixed one of Q1,,,---,Q;. Put K =
u(2). By Jager and Kaul [18], for all ¢ € K,

U, (s) = 1 — cos(+v/kdn(g, s))
! Ve cos(Vkdn(p, 5))
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is convex in Bg(p), where dx denotes the distance function of N. There-
fore, ¥,(u(z)) is a bounded subharmonic function in € by Gordon [14].
Put ¢; = limsup,, . zeqr Yq(u(z)), then g4(z) = ¢g — ¥y(u(z)) is a
bounded superharmonic function in 2 and
lim inf =0.
Jmint, o) =0
By Lemma 2.2, for any finite points ¢1,¢2,- - - ,qx and any € > 0,
k
(2.2) (HzeQ:gg(x) <e}#0.
i=1
Put A(g,e) = {s € K : ¢g—¥4(s) < e}. Then by (2.2) and the definition
of K and g,, the intersection of finitely many A(g,€) is nonempty. By
the compactness of K, there exists a point gy € A(g,€) for all ¢ € K
and € > 0. In particular, ¢;y — ¥,,(qo0) < € for any € > 0, hence ¢4, < 0.
However, since ¢4, > 0, we get cq, = 0, i.e.,
limsup Wy, (u(z)) =0.

n—o00,LEN"

Since 0 < Wy (u(x)) < supgean Vg (u(z)),
lim g (u(z)) = 0.

n—00,LEN™
This implies that

li = Q.
n_,o;glemuw) 9

|

We are now ready to prove an existence and uniqueness theorem on
bounded harmonic maps as follows:

THEOREM 2.4. Let M be a complete Riemannian manifold with
dim HB(M) =1 for some l € N. Let h;, Q; and 0%, 4,5 =1,2,---,1, be
given as in Lemma 2.1. Then for given points q1,q2,- - ,q in a regular
ball Br(p), there exists a harmonic map u on M into Br(p) such that
for each j =1,2,---,1,

2.3 li = q;.

(2.3) n%ggeQ?U(x) 9

Furthermore, the solution u satisfying (2.3) is unique, i.e., if 4 is another
harmonic map on M into Br(p) such that

lim a(z)= lim  wu(x),
n—>00,x€Q;‘ n—-»oo,wEQ?

thent=u on M.
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Proof. We can coordinatize Bg(p) by means of geodesic normal coor-
dinates centered at p. So, a map ¢ : M — Bg(p) can be viewed as being
an R™-valued map with respect to the normal coordinates centered at
p as follows:

¢:(¢17¢27'” 7¢m)M—>BR(O)CRm

For each j = 1,2,--- 1, let ¢; = (a;1,aj2, - ,@jm) in the normal coor-
dinates.

Define a map f - (flvf?a"' ’fm) ‘M- BR( ) by fl - Z] 1a]zh
Of course, each f; is a bounded harmonic function on M. Choose a
sequence {v, } of solutions such that Av, = 0 in B,(0) and v, = > 1", f2
on 9B, (o).

By Hildebrandt, Kaul and Widman {17], for each r > 0, there exists
a harmonic map u, from B,(0) into Bg(p) such that u, = f on 9B, (o).
The a priori estimate of Giaquinta and Hildebrandt [13] implies that for
sufficiently large 7o and some 8 € (0,1), [ur|c2(B, (o)) is bounded by a
constant depending only on M, Br(p) and h, where r > rg. Hence by
the Ascoli theorem, there exists a subsequence {u,, } of {u,} converging
uniformly on any compact subset of M. In particular, the limit map
u: M — Bg(p) is also a harmonic map. On the other hand, by Lemma
3.1 in [1], there exists a constant C' > 0 depending only on the geometry
of Bgr(p) such that

(2.4) dn (ur(z), f(2)) < Clur(x) — Z (@)

for all x € B,.(o )

Put v = Z] L iy adhy. We claim that Y7, f2 < v on M.
Otherwise, w = Y_i*, f2 — v is a bounded subharmonic function and
supp; w > 0. Since for each j =1,2,---,1
there exist a sufficiently small ¢ > 0 and an integer n € N such that a
massive subset {z € M : w(z) > sup,; w— e} does not intersect UélegL.
However, this is impossible since the maximal number of mutually dis-
joint massive subsets of M is [ by [14]. Therefore, we get the claim.

Since v, = Y., f? < v on 8B, (0), by the maximum principle, we
have

(2.5) v < v on By(o)
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for all » > 0. By a diagonal sequence argument, (2.4) and (2.5),

(2.6) dn(u(@), f(2)) < Clo(z) = ) f2(x))
=1

for all z € M.
On the other hand, since

ey (V7) ~ L o) =0
by (2.6) we get
lim _ dn(u(z), f(z)) =0.

n-—-)oo,zeﬂgl
Hence by Lemma 2.1, we have

li = i =g,
e u(x) . fz) =g
for each j =1,2,..- L
Next, we prove the uniqueness. By Kendall [20], there is a continuous
nonnegative bounded convex function ¥ on Br(0)x Br(0) and ¥(z,y) =
0 if and only if x = y. Suppose that @ and v are harmonic maps on M
into Br(p) such that
lim d(z)= lim  u(z)
n—00,z€07 n—o0,z€1}
for each j =1,2,---,l. Put g(z) = ¥(a(z),u(z)), then g is a nonnega-
tive bounded subharmonic function in M such that
li =0
nqoégleﬂ;” g(fE)
foreach j =1,2,--- 1L
Suppose that supy; g > 0. Then there exist a sufficiently small € > 0
and an integer n € N such that a massive subset {z € M : g(z) >
sup,s g — €} does not intersect Zé-:l (2. This contradicts that the max-
imal number of mutually disjoint massive subsets of M is [. Therefore,
we have g = 0, hence & = u on M. O

It has to be emphasized that the only assumption imposed on the
domain manifold in our result is the finite dimensionality of the space
of bounded harmonic functions on the manifold. Therefore, in the case
that M is either a complete Riemannian manifold with nonnegative
Ricci curvature outside a compact set and finite first Betti number or a
connected sum of complete Riemannian manifolds, each of which satisfies
the conditions (W) and (M), we have the same consequence. As the
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simplest situation, if dim HB(M) = 1, then any harmonic map on M into
a regular ball must be constant. For example, the class being roughly
isometric to a complete Riemannian manifold with nonnegative Ricci
curvature are the case.

On the other hand, Cheng, Tam and Wan [4] proved that if every
harmonic function on a complete Riemannian manifold M with finite
Dirichlet integral is bounded, then every harmonic map with finite en-
ergy from M into a Cartan-Hadamard manifold must be bounded. In
particular, by [29], if the space HD(M) of harmonic functions with finite
Dirichlet integral on M is finite dimensional, then every harmonic func-
tion with finite Dirichlet integral on M is bounded. Therefore, using
[15], in the case when dim HD(M) = [ for some | € N, the maximal
number of mutually disjoint D-massive subsets of M is [. Here, that
a set ) is a D-massive subset of M means that € is a massive subset
and has an inner potential v with finite Dirichlet integral. With these
results, similarly arguing as in the case of harmonic maps into a regular
ball, we get the following consequence:

THEOREM 2.5. Let M be a complete Riemannian manifold with
dimHD(M) = | for some ] € N. Let Q;, j =1,2,---,1, be D-massive
subsets of M and Q;L be similarly constructed as in Lemma 2.1. Then for
any harmonic map u with finite energy on M into a Cartan-Hadamard
manifold N, there exist points q1,qz2,---,q in N such that for each
j: 1727"' 7l7

2.7 lim  u(x) = q;.
( ) n—>oo7xEQ;.” ( ) 9
Furthermore, for any given points qi,qo2, -+ ,q in N, there exists a
unique harmonic map u with finite energy on M into N satisfying (2.7).

3. Polynomial growth harmonic maps

We first consider a connected sum of complete Riemannian manifolds
satisfying the conditions (W) and (M).

LEMMA 3.1. Let M be a complete Riemannian manifold satisfying
(W), and o be a fixed point in M. For any 0 < o < 1/4 and r > 0,
let {z1,29,"+ , Ty} be a maximal set of points in &B,(o) such that
d(z;, ;) > 2ar fori # j, then m(a) < Ca™*!, where C is independent
of o and r.
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Proof. Fix 0 < a < 1/4 and r > 0. Since By, (x;)’s are mutually
disjoint, by applying (W), we get

m(a)V,(r) < va 2r)

2 m(a)
< E Z Ve, (ar)
< c(g)”m((l o))~ Vol(1 — @)
2.v 1+a..
< o2y -y -
< ) avilr)
This implies the consequence. U

Let M = Mi§Maf-- - $M; be a connected sum of complete Riemann-
ian manifolds M;,i = 1,2,--- 1, each of which satisfies the conditions
(W) and (M). Then there exist rg > 0 and fixed points o; € M;,i =
1,2)--- 1, such that for any r > 2rg,

Uiz1(M; \ Br(0:)) € M\ By, (0),

where o is a fixed point in M. Applying Lemma 3.1, for any 0 <
a<l1/4,r > 2r¢ and each 7 = 1,2,---,l, there exists a maximal set
{z%, 28,z ma(ay) Of Points in BB (ol)ﬂM such that d(z},2}) > ar/4
if j # k and mz( ) < Ca~ %1 where v; denotes the order in (W) cor-
responding to each M,;.

Suppose that D is a rank & vector bundle over M with a metric. We
now define a positive semidefinite symmetric bilinear form S, on the
space of sections I'(D) of D by

{
1
(3.1)  Sp(u,v) = V1A/ o)+ V'(ar)/Bm@(u’v)’

i=1 j=1

for u,v € I'(D), where A, = U'_, (M \ (M; \ B,(0;))).
Modifying the argument in [24], we get the following two lemmas
similar to those of [24]. (See also [31]).

LEMMA 3.2. Let K be an N-dimensional subspace of I'(D) such that
Alul?2 > 0 for all u € K. Then there is a constant C > 0 such that for
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any 0 < a < 1/4 and an orthonormal basis {u,ua,--- ,un} for K with
respect t0 S(1ya)r,

N l
D Se(usu) < CA+ Y mi(a))
=1 i=1

for all sufficiently large r > 2rg.

LEMMA 3.3. Let K be an N-dimensional subspace of I'(D) with poly-
nomial growth of degree at most d. Then for any 0 < « < 1/4, there
exists > 2rg such that if {uy,us,--- ,un} is an orthonormal basis for
K with respect to S 1), then

N
> S (ui, ug) > N(1+ )~ 3D,
i=1

To treat polynomial growth harmonic maps, we need to introduce the
concept of d-massive sets, which is introduced by Li and Wang [26], as
follows:

DEFINITION 3.4. A subset 2 of M is called a d-massive subset if there
exists a nonzero nonnegative subharmonic function v on M such that
uw=0on M\Q and u(z) = O(r%(z)) as r(z) — oo, where r(z) = d(z,0).
Such a function u is called a d-potential function of €.

We are now ready to prove Theorem 1.2:

Proof of Theorem 1.2. Let Q1,8s, - ,Qu be disjoint d-massive sub-
sets of M, and uqy,us,--- ,uy be the corresponding potential functions.
Then obviously, u1,ug, -+ ,un are linearly independent. Applying Lem-
ma 3.1, Lemma 3.2 and Lemma 3.3 with a = (4d)™", there is a constant
C > 0 such that

l l
N<CO+) mi(1/ad) <O+ doh,
=1 =1
where C is independent of d. This implies that the number of mutually
disjoint d-massive subsets of M is bounded by C(1 + 22:1 dvi—hy.
Since each M;, i =1,2,--- 1, satisfies the conditions (W) and (M), it
has at most one massive subset. Hence the number of mutually disjoint

massive subsets of M is bounded by [. By applying Theorem 1.1 and
above results. we have Theorem 1.2. U
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We next consider the case of a complete Riemannian manifold with
nonnegative Ricci curvature outside a compact set and finite first Betti
number. Modifying [2], we have the following relative volume compari-
son:

LEMMA 3.5. Let M be a complete Riemannian manifold with Ricci
curvature satisfying Ricpr(x) > —(n — 1)K/(1 + r(z))?, where K is a
positive constant and r(z) denotes the distance from x to a fixed point
o in M. Then for any 0 < o < 1/4 and r > ry,

Vo((1+ a)r) = Vo((1 = a)r) < Ca(Vo(r) — Vo(ro))-

Proof. Let g be the solution of the linear equation ¢"” = —Kg/(1+t)?
with initial condition g(0) = 0 and ¢'(0) = 1. Then

o) = 5 (1407 = (1 +)
where 81 = (1 + (1 + 4K)Y/2)/2 and 85 = (1 — (1 + 4K)/2)/2. By the
relative volume comparison in [2], for sufficiently small § > 0, we have
Vo((1 + ogr) — Vo((1 — o)
Vo((1 = a)r) = Vo(ro)

ST (4P — 1+ )%) " at

SO (14 )8 — (1 +0)%) " de

((1+ a)fr(n=1) (1 — a)ﬂl(n—l))rﬂl(n—l) + O(rBr(n—1)=%)

- (1 — @)frn=DpBiln=1) 4 O(rfr{n-1)-9)

< Ca,

where C depends only on #y(n — 1). O

We now define ends of a complete Riemannian manifold M: We
denote by #(r) the number of unbounded components of M \ B,(0),
where o is a fixed point in M. Then §(r) is nondecreasing in » > 0 and
we can define the number lim, . #(r) = {, where [ may be infinity. If /
is finite, then we can choose ¢ > 0 such that §(r) = for all r > 79, and
there exist mutually disjoint unbounded components Ey, Es,--- , By of
M\ B,,(0). We call each E; an end of M fori=1,2,--- 1.

In [27], Liu proved that if M is a complete Riemannian manifold with
nonnegative Ricci curvature outside a compact set, then M has only
finitely many ends. He also proved that there exist an integer m > 0
and points x1, 2, - , Tm in 8B, (0) such that for sufficiently large r > 0,

0B (0) C ULy Brya(wi),
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where o is a fixed point in M. Hence, for each end E of M, 0Cg, is
also covered by finitely many geodesic balls of radius r/4 with centers
in 0Cg,. On the other hand, Li and Tam [25] proved that if M also
has finite first Betti number, then each end E of M satisfies the volume
comparison property (C) as follows:

(C) There is a constant C' > 0 such that for any r > 0 large enough
and any z € 0Cg,,

volAr, < CVi(r/4),

where Cg, denotes the unbounded component of E \ B,(0) and
AL, denotes (B, (0) \ By,(0)) N E.

Note that if M is a complete Riemannian manifold with nonnegative
Ricci curvature outside a compact set, then there is 79 > 0 such that
for each ball B,(z) € M \ B,,(0), the conditions (W) and (M) is valid.
Furthermore, it is sufficient to prove Lemma 3.2. Applying the argument
employed in the proof of Theorem 1.2 to this case, we get Theorem 1.3
as follows:

Proof of Theorem 1.3. For this case, we redefine the inner product in
(3.1) as follows: For each end E; and any 7 > ro, there exists a maximal
set {xf,2b, - ,:cjm(a)} of points in OCE, » such that d(z},z}) > ar if
j # k. We define a positive semidefinite bilinear form S, by

m;(a)

1 1
Sr(u,v) = volA, /ATW’U> +Z Z Vi (ar) /Bm(zg)@’w’

i=1 j=1 %}

where 4, = Ul_, (M \ Cg, ).

For an end E of M, choose a maximal set Fy = {z; : j =1,2,--- ,mp}
of points in dCEg , such that d(z;,x;) > r/4 for any ¢ # j. Then by the
condition (C),

(3.2) volAE, < OV, (r/4).

By adding some points to Fj, choose a maximal set F, = {y; : i =
1,2,--- ,m(a)} of points in OCg, such that d(y;,y;) > ar and Fy C
Fy. Then for each y; € F,, there exists a point x;; € Fy such that
B, /4(zi;) C By ja(y;). This implies, by the condition (W), that

Ve, (r/4) < Ca™"Vy,(ar/2).

&
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Since Uy, er, Bar/2(y;) C Afj

(1+a)r,(1—ayrs DY (3.2) and Lemma 3.5,

m(a)volAE < Ca™"Vy,(ar/2)

70
_<_ Ca_VVOIAg-l—a)T,(l—a)T‘
< Ca Vlvola¥

70"

Therefore, for each i = 1,2,---,1, we have m;(1/4d) < Cd¥%~!. In
particular, the space of bounded harmonic functions on M is finite di-
mensional and its dimension is bounded by the number of nonparabolic
ends of M. (See [25] for the proof). Since each v; < n, similarly arguing
as in the proof of Theorem 1.2, we get Theorem 1.3 O

COROLLARY 3.6. Let M be a connected sum of complete n-dimension-
al Riemannian manifolds My, Ms, - - - , M; with nonnegative Ricci curva-
ture. If either u is bounded, or N is two dimensional visibility manifold,
or the sectional curvature satisfies —b* < Ky < —a? < 0, then there
exist sets of points {qj};?:1 in w(M) N N with k < 1 and {g; fil in
u(M) N N(oo) with kg < C(1+1d") — I such that

u(M) C c({g; )i, u{gYey).

Finally, let us consider the class being roughly isometric to previous
cases. A map, not necessarily continuous, ¢ : X — Y is called a rough
isometry between two metric spaces X and Y if ¢ satisfies the following
condition: (See [19] for the detail).

(R) for some 7 > 0, the 7-neighborhood of the image ¢(X) covers Y;
there exist constants a > 1 and b > 0 such that

a Yd(xy,x2) — b < d(p(z1), 9(x2)) < ad(zy,z2) +b

for all 1,29 € X, where d denotes the distances of X and Y
induced from their metrics, respectively.

Throughout this paper, when we say that a map ¢ : M — N is a rough
isometry between complete Riemannian manifolds M and N, we assume
that Ricci curvature of each manifold is bounded below by a constant
and each manifold has the positive injectivity radius.

First of all, the number of ends is a rough isometric invariant and, in
addition, each rough isometry between manifolds can be reduced to a
rough isometry between ends. (See [21]). It is easy to prove the rough
isometric invariance of the volume doubling condition (V) on each end
as follows: For each end FE of M.
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(V)o there exist constants C > 0 and v > 0 such that for any B,(z) C E
and sufficiently large 0 < s <,

Vo (r) < c(g)”vz(s).

Slightly modifying the argument in [12}, one can prove that the mean
value property (M) is valid on each end being roughly isometric to any
end satisfying the volume doubling condition (V)¢ and the Poincaré
inequality (P )¢ defined below: For each end E of M,

(P)o there exist a constant C' > 0 and an integer k¥ € N such that for
any B,(z) C E,

/ e
By i) Br(xz)

Furthermore, a rough isometry between ends preserves the covering
number as follows: (See [21] for the proof).

LEMMA 3.7. Let ¢ : E — E' be a rough isometry between ends E
and E'. If for any 0 < o < 1/4 and all r > rg, there exist an inte-
ger m = m(a) and points x1,22, + , %y in OCg, such that 0Cg, C
Uiy Borjo(i), then there exists a sequence {H,} of compact hypersur-
faces in E' such that d(8F', H,;) — oo asr — oo, H,C U™ | Bag2q,(0(:)).
In particular, each H, divides E’ into a bounded subset K, and the un-
bounded component U, of E'\ H,.

Let M be a complete Riemannian manifold being roughly isometric
to a complete Riemannian manifold with nonnegative Ricci curvature
outside a compact set and finite first Betti number. Then M has finitely
many ends F;, 1,2,--- [, and by Lemma 3.7, each end E; satisfies the
following: For a sufficiently small 0 < a < 1/4, there exist an integer

m; = my(a) and points z, 2%, -, 2%, such that d(dE;, HY) — oo as
r — 00, Hi C U Bay(p(a5)) and U2, Bar(p(2})) is connected, where
H! is a compact hypersurface in E; dividing E; into a bounded subset
K and the unbounded component U of E*\ H?, and & = 3aa. In this

case, we redefine the inner product in (3.1) as follows:

~ 1 1
Sr(u,v) = volA /Ar<u,v) + ZZ V—'._(E“—) /B&T(Lp(z;))<u,v>7
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where A, = U_, K%. For this new bilinear form S, we also have Lemma
3.2 and Lemma 3.3. (See [23] for the proof). Therefore, similarly arguing
as in the proof of Theorem 1.3, we have the following result:

THEOREM 3.8. Let M be a complete Riemannian manifold being
roughly isometric to a complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature outside a compact set and finite first
Betti number. Suppose that N is two dimensional visibility manifold,
or a Cartan-Hadamard manifold with the sectional curvature satisfying
~b? < Ky < —a?<0. Let u: M — N be a harmonic map satisfying
(1.1) for some d > 0. Then there exist sets of points {qj};“:l inu(M)NN
with k < | and {g;}*¢, in u(M)NN(oo) with kg < C(1+3_, d*~1)~1 <
C(1+1d" ') — 1 such that

u(M) € C({gi}i2, U {g}k),

where | is the number of ends of M and v; (< n) denotes the order in the

volume doubling condition corresponding to each end E;,i =1,2,---,1,
of M.

COROLLARY 3.9. Let M be a complete Riemannian manifold be-
ing roughly isometric to a connected sum of complete n-dimensional
Riemannian manifolds M;, i = 1,2,--- ,l, with nonnegative Ricci curva-
ture. Suppose that N is two dimensional visibility manifold, or a Cartan-
Hadamard manifold with the sectional curvature satisfying - <Ky<
—a? < 0. Let u: M — N be a harmonic map satisfying (1.1) for some
d > 0. Then there exist sets of points {qj};-“:1 inu(M)NN with k <1

and {g;}*, in w(M) N N(c0) with kg < C(1+1d"1) — [ such that

u(M) C C({gi 2, U {g15y).
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