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VANISHING PROPERTIES OF p-HARMONIC `-FORMS ON

RIEMANNIAN MANIFOLDS

Nguyen Thac Dung and Pham Trong Tien

Abstract. In this paper, we show several vanishing type theorems for

p-harmonic `-forms on Riemannian manifolds (p ≥ 2). First of all, we
consider complete non-compact immersed submanifolds Mn of Nn+m

with flat normal bundle, we prove that any p-harmonic `-form on M is
trivial if N has pure curvature tensor and M satisfies some geometric

conditions. Then, we obtain a vanishing theorem on Riemannian mani-

folds with a weighted Poincaré inequality. Final, we investigate complete
simply connected, locally conformally flat Riemannian manifolds M and

point out that there is no nontrivial p-harmonic `-form on M provided

that the Ricci curvature has suitable bound.

1. Introduction

Suppose that M is a complete noncompact oriented Riemannian manifold
of dimension n. At a point x ∈ M , let {ω1, . . . , ωn} be a positively oriented
orthonormal coframe on T ∗x (M), the Hodge star operator acting on the space
of smooth `-forms Λ`(M) is given by

∗(ωi1 ∧ · · · ∧ ωi`) = ωj1 ∧ · · · ∧ ωjn−`
,

where j1, . . . , jn−` are selected such that {ωi1 , . . . , ωi` , ωj1 , . . . , ωjn−`
} gives a

positive orientation. Let d be the exterior differential operator, so its dual
operator δ is defined by

δ = (−1)n(`+1)+1 ∗ d ∗ .
Then the Hogde-Laplace-Beltrami operator ∆ acting on the space of smooth
`-forms Ω`(M) is of form

∆ = −(δd+ dδ).

When M is compact, it is well-known that the space of harmonic `-forms is
isomorphic to its `-th de Rham cohomology group. This is not true when M
is non-compact but the theory of L2 harmonic forms still has some interesting
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applications. For further results, we refer the reader to [2, 3]. In [16], Li stud-
ied Sobolev inequality on spaces of harmonic `-forms on compact Riemannian
manifolds. He gave estimates of the bottom of `-spectrum and proved that the
space of harmonic `-forms is of finite dimension provided that the Ricci curva-
ture is bounded from below. In [29], Tanno studied L2 harmonic `-forms on
complete orientable stable minimal hypersurface M immersed in the Euclidean
space Rn+1. He showed that there are no non trivial L2 harmonic `-forms on M
if n ≤ 4. Later, Zhu generalized Tanno’s results to manifolds with non-negative
isotropic curvature (see [35]). He also proved in [36] that the Tanno’s results
are true if Mn, n ≤ 4, is a complete noncompact strongly stable hypersurface
with constant mean curvature in Rn+1 or Sn+1. Recently, in [20], Lin investi-
gated spaces of L2 harmonic `-forms H`(L2(M)) on submanifolds in Euclidean
space with flat normal bundle. Assumed that the submanifolds are of finite to-
tal curvature, Lin showed that the space H`(L2(M)) has finite dimension (see
also [37] for the case ` = 2). For further results in this direction, we refer to
[21–23,27,35,36] and the references therein. It is also worth to notice that the
main tools to study the spaces of harmonic `-forms are the Bochner type for-
mulas and refined Kato type inequalities. In 2000, Calderbank et al. gave very
general forms of Kato type inequalities in [1]. Then in [33], Wang used them
to prove a vanishing property of the space of L2 harmonic `-forms on convex
cocompact hyperbolic manifolds. Later, in [32], Wan and Xin studied L2 har-
monic `-forms on conformally compact manifolds with a rather weak boundary
regularity assumption. Recently, in [7], Cibotaru and Zhu introduced a proof
of the mentioned results from [1] avoiding as much as possible representation
theoretic technicalities. The refined Kato type inequalities they obtained also
refined those used in [32,33].

On the other hand, the p-Laplacian operator on a Riemannian manifold M
is defined by

∆pu := Div(|∇u|p−2∇u)

for any function u ∈ W 1,p
loc (M) and p > 1, which arises as the Euler-Lagrange

operator associated to the p-energy functional

Ep(u) :=

∫
M

|∇u|p.

Therefore, if u is a smooth p-harmonic function, then du is a p-harmonic 1-
form. We refer the reader to [14, 24] for the connection between p-harmonic
functions and the inverse mean curvature flow. Motivated by the above beau-
tiful relationship between the space of harmonic `-forms and the geometry of
Riemannian manifolds, it is very natural for us to study the geometric struc-
tures of Riemannian manifolds by using the vanishing properties of p-harmonic
`-forms with finite Lq energy for some p ≥ 2 and q ≥ 0.

Recall that an `-form ω on a Riemannian manifold M is said to be p-
harmonic if ω satisfies dω = 0 and δ(|ω|p−2ω) = 0. When p = 2, a p-harmonic
`-form is exactly a harmonic `-form. Some vanishing properties of the space
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of p-harmonic `-forms were given by X. Zhang in [34]. In particular, Zhang
showed that there are no nontrivial p-harmonic 1-forms in Lq(M), q > 0 if the
Ricci curvature on M is nonnegative. Motivated by Zhang’s results, Chang
et al., in [5] proved that any bounded set of p-harmonic 1-forms in Lq(M),
0 < q < ∞, is relatively compact with respect to the uniform convergence
topology. Recently, it is showed that the set of p-harmonic 1-forms has closed
relationship with the connectedness at infinity of the manifold, in particularly,
with p-nonparabolic ends. In [10], the first author and Seo studied the connect-
edness at infinity of complete submanifolds by using the theory of p-harmonic
functions. For lower-dimensional cases, they proved that if M is a complete
orientable noncompact hypersurface in Rn+1 and a δ-stable inequality holds
on M , then M has at most one p-nonparabolic end. It was also proved that
if Mn is a complete noncompact submanifold in Rn+k with sufficiently small
Ln-norm of the traceless second fundamental form, then M has at most one p-
nonparabolic end. For the reader’s convenience, let us recall a definition of the
p-nonparabolic ends. Let E ⊂ M be an end of M , namely, E is a unbounded
connected component of M \ Ω for a sufficiently large compact subset Ω ⊂ M
with smooth boundary. As in usual harmonic function theory, we define the
p-parabolicity and p-nonparabolicity of E as follows (see [4] and the references
therein):

Definition 1.1. An end E of the Riemannian manifold M is called p-parabolic
if for every compact subset K ⊂ E

capp(K,E) := inf

∫
E

|∇f |p = 0,

where the infimum is taken among all f ∈ C∞0 (E) such that f ≥ 1 on K.
Otherwise, the end E is called p-nonparabolic.

The first main result in this paper is the below theorem.

Theorem 1.2. Let Mn (n ≥ 3) be a complete non-compact immersed sub-
manifold of Nn+m. Assume that M has flat normal bundle, Nn+m has pure
curvature tensor and the (1, n − 1)-curvature of Nn+m is not less than −k,
k ≥ 0. If one of the following conditions

1.

|A|2 ≤ n2|H|2 − 2k

n− 1
, vol(M) =∞;

2.

n2|H|2 − 2k

n− 1
< |A|2 ≤ n2|H|2

n− 1
and λ1(M) >

kp2(n− 1)

4(p− 1)(n+ p− 2)
;

3. the total curvature ‖A‖n is bounded by

‖A‖2n < min

{
n2

(n− 1)CS
,

2

(n− 1)CS

[
4(p− 1)(n+ p− 2)

p2(n− 1)
− k

λ1(M)

]}
;
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4. supM |A| is bounded and the fundamental tone satisfies

λ1(M) >
p2(n− 1)(2k + (n− 1) supM |A|2)

8(p− 1)(n+ p− 2)
,

holds true, then every p-harmonic Lp 1-form on M is trivial. Therefore, M
has at most one p-nonparabolic end. Here CS is the Sobolev constant which
depends only on n (see Lemma 2.1).

Here, we refer the reader to Section 2, for a definition of (1, n−1)-curvature.
This results generalizes a work of the first author in [8]. On the other hand,
we consider p-harmonic `-forms on Riemannian manifolds with a weighted
Poincaré inequality. Recall that let (Mn, g) be a Riemannian manifold of di-
mension n and ρ ∈ C(M) be a positive function on M . We say that M has a
weighted Poincaré inequality, if

(1.1)

∫
M

ρϕ2 ≤
∫
M

|∇ϕ|2

holds true for any smooth function ϕ ∈ C∞0 (M) with compact support in M .
The positive function ρ is called the weighted function. It is easy to see that
if the bottom of the spectrum of Laplacian λ1(M) is positive, then M satisfies
a weighted Poincaré inequality with ρ ≡ λ1. This is because λ1(M) can be
characterized by variational principle

λ1(M) = inf

{∫
M
|∇ϕ|2∫
M
ϕ2

: ϕ ∈ C∞0 (M)

}
.

When M satisfies a weighted Poincaré inequality then M has many interest-
ing properties concerning topology and geometry. For example, in [31], Vieira
obtained vanishing theorems for L2 harmonic 1-forms on complete Riemann-
ian manifolds satisfying a weighted Poincaré inequality and having a certain
lower bound of the bi-Ricci curvature. His theorems are an improvement of
Li-Wang’s and Lam’s results (see [15, 18, 19]). Moreover, some applications to
study geometric structures of minimal hypersurfaces are also given. We refer
to [6, 11] and the references therein for further results on the vanishing prop-
erty of the space of harmonic `-forms. In the nonlinear setting, Chang et al.
studied p-harmonic functions with finite Lq energy in [4], and proved some van-
ishing type theorems on Riemannian manifolds satisfying a weighted Poincaré
inequality. Later, Sung and Wang, Dat and the first author used theory of p-
harmonic functions to show some interesting rigidity properties of Riemannian
manifolds with maximal p-spectrum (see [9, 28]). In this paper, we will inves-
tigate Riemannian manifolds with a weighted Poincaré inequality and prove
some vanishing results for p-harmonic `-forms on such these manifolds. Our
results can be considered as a generalization of Vieira’s and the first author’s
results (see [8, 31]). Finally, we are also interested in locally conformally flat
Riemannian manifolds, our theorem is the following vanishing property.
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Theorem 1.3. Let (Mn, g), n ≥ 3, be an n-dimensional complete, simply
connected, locally conformally flat Riemannian manifold. If one of the following
conditions

1.

‖T‖n/2 +
‖R‖n/2√

n
<

4
(
p− 1 + min

{
1, (p−1)

2

n−1

})
Sp2

;

2. the scalar curvature R is nonpositive and

Kp,n :=
p− 1 + min

{
1, (p−1)

2

n−1

}
p2

− n− 1√
n(n− 2)

> 0,

and

‖T‖n/2 <
4Kp,n

S
= 4Kp,nY(Sn);

holds true, then every p-harmonic 1-form with finite Lp(p ≥ 2) norm on M is
trivial, and M must has at most one p-nonparabolic end. Here T is the traceless
Ricci tensor, S is the constant given in Lemma 5.1, and Y(Sn) is the Yamabe
constant of Sn.

The rest of this paper is organized as follows. In Section 2, we recall some
basic notations and useful backgrounds on theory of smooth `-forms. Then,
in Section 3, we study p-harmonic `-forms in submanifolds of Nn+m with flat
normal bundle and pure curvature tensor. We will give a proof of Theorem
1.2 in this section. In Section 4, we derive some vanishing properties for p-
harmonic `-forms on manifolds with a weighted Poincaré inequality. Finally, in
Section 5, we consider locally conformally flat Riemannian manifolds and give
a proof of Theorem 1.3.

2. Preliminary notations

In this paper for n ≥ 3, 1 ≤ ` ≤ n− 1 and p ≥ 2, q ≥ 0, we denote

Cn,` := max{`, n− `}
and

Ap,n,` =


1 +

1

max `, n− `
, if p = 2,

1 +
1

(p− 1)2
min

{
1,

(p− 1)2

n− 1

}
, if p > 2 and ` = 1,

1, if p > 2 and 1 < ` ≤ n− 1.

Hence,

(p− 1)2(Ap,n,` − 1) =


1

max{`, n− `}
, if p = 2 and 1 ≤ ` ≤ n− 1,

min

{
1,

(p− 1)2

n− 1

}
, if p > 2 and ` = 1,

0, if p > 2 and 1 < ` ≤ n− 1.
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We will use the following Sobolev inequality.

Lemma 2.1 ([13]). Let Mn (n ≥ 3) be an n-dimensional complete submanifold
in a complete simply-connected manifold with nonpositive sectional curvature.
Then for any f ∈W 1,2

0 (M) we have(∫
M

|f |
2n

n−2 dv

)n−2
n

≤ CS
∫
M

(
|∇f |2 + |H|2f2

)
dv,

where CS is the Sobolev constant which depends only on n.

An important ingredient in our methods is the following refined Kato in-
equality. In order to state the inequality, let us recall some notations. Suppose
that {e1, . . . , en} is an orthonormal basic of Rn. Let θ1 : Λ`+1Rn → R⊗ Λ`Rn
given by

θ1(v1 ∧ · · · ∧ v`+1) =
1√
`+ 1

`+1∑
j=1

(−1)jvj ⊗ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v`+1

and θ2 : Λ`−1Rn → R⊗ Λ`Rn by

θ2(ω) = − 1√
n+ 1− `

n∑
j=1

ej ⊗ (ej ∧ ω).

Lemma 2.2 ([1, 10, 17]). For p ≥ 2, ` ≥ 1, let ω be a p-harmonic `-form on a
complete Riemannian manifold Mn. The following inequality holds true

(2.1)
∣∣∇ (|ω|p−2ω)∣∣2 ≥ Ap,n,` ∣∣∇|ω|p−1∣∣2 .

Moreover, when p = 2, ` > 1 then the equality holds if and only if there exists
a 1-form α such that

∇ω = α⊗ ω − 1√
`+ 1

θ1(α ∧ ω) +
1√

n+ 1− `
θ2(iαω).

Proof. The inequality (2.1) is well-known when ` = 1, p = 2, for example, see
[17]. When ` = 1, p > 2, the inequality (2.1) was proved by Seo and the first
author in [10]. Note that when p = 2, ` > 1, the inequality (2.1) was proved
by Calderbank et al. (see [1]) but we refer to [7] in a way convenient for our
purpose without introducing abstract notation.

Finally, when p > 2, ` > 1, the inequality (2.1) is standard (see [1]). �

Note that if M is not complete, then (2.1) is still true provided that ω is a
harmonic field, see [7] for further discussion.

Suppose that M is a complete noncompact Riemannian manifold. Let
{e1, . . . , en} be a local orthonormal frame onM with dual coframe {ω1, . . . , ωn}.
Given an `-form ω on M , the Weitzenböck curvature operator K` acting on ω
is defined by

K` =

n∑
j.k=1

ωk ∧ iejR(ek, ej)ω.
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Using the Weitzenböck curvature operator, we have the following Bochner type
formula for `-forms.

Lemma 2.3 ([17]). Let ω =
∑
I aIωI be a `-form on M . Then

∆|ω|2 = 2 〈∆ω, ω〉+ 2|∇ω|2 + 2 〈E(ω), ω〉
= 2 〈∆ω, ω〉+ 2|∇ω|2 + 2K`(ω, ω),

where E(ω) =
n∑

j,k=1

ωk ∧ iejR(ek, ej)ω.

In order to estimate the K`, we need to define a new curvature which is
appear naturally as a component of the Weitzenböck curvature operator (see
[20,22]).

Definition 2.4. Let Mn be a complete immersed submanifold in a Riemannian
manifold Nn+m with flat normal bundle. Here the submanifold M is said to
have flat normal bundle if the normal connection of M is flat, namely the
components of the normal curvature tensor of M are zero. For any point
x ∈ Nn+m, choose an orthonormal frame {ei, . . . , en}n+mi=1 of the tangent space
TxN and define

R
(`,n−`)

([ei1 . . . , ein ]) =
∑̀
k=1

n∑
h=`+1

Rikihikih

for 1 ≤ ` ≤ n − 1, where the indices 1 ≤ i1, . . . in ≤ n + m are distinct with

each other. We call R
(`,n−`)

([ei1 . . . , ein ]) the (`, n− `)-curvature of Nn+m.

Assume that N has pure curvature tensor, namely for every p ∈ N there is
an orthonormal basis {e1, . . . , en} of the tangent space TpN such that Rijrs :=
〈R(ei, ej)er, es〉 = 0 whenever the set {i, j, r, s} contains more than two ele-
ments. Here Rijrs denote the curvature tensors of N . It is worth to notice that
all 3-manifolds and conformally flat manifolds have pure curvature tensor. It
was proved in [20] that

K`(ω, ω) ≥ 1

2
(n2|H|2 − Cn,`|A|2) + inf

i1,...,in
R

(`,n−`)
([ei1 , . . . , ein ])|ω|2.

Finally, to prove the vanishing property of p-harmonic `-forms, we use the
following useful estimate.

Lemma 2.5. For any closed `-form ω and ϕ ∈ C∞(M), we have

|d(ϕω)| = |dϕ ∧ ω| ≤ |dϕ| · |ω|.

Proof. Let {Xi} be a local orthonormal frame and {dxi} is the dual coframe.
Since ω is closed, we have d(ϕω) = dϕ ∧ ω. Suppose that

ω =
∑
|I|=`

ωIdx
I =

∑
|K|=`−1

n∑
j=1

ωjKdxj ∧ dxK ,
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where ωjK = 0 if j ∈ K. Therefore, denote ϕi = ∇Xi
ϕ, we have

dϕ ∧ ω =
∑

|K|=`−1

n∑
i 6=j.i,j 6∈K

ϕiωjKdxi ∧ dxj ∧ dxK .

Observe that, for any ai, bi ∈ R, i = 1, n∑
i<j

(aibj − ajbi)2 +

(
n∑
i=1

aibi

)2

=

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
,

we infer

|dϕ ∧ ω|2 =
∑

|K|=`−1

∑
i<j,i,j 6∈K

(ϕiωjK − ϕjωiK)2

≤
∑

|K|=`−1

∑
i<j

(ϕiωjK − ϕjωiK)2

≤
∑

|K|=`−1

(
n∑
i=1

ϕ2
i

) n∑
j=1

ωjK

 = |dϕ|2|ω|2.

The proof is complete. �

3. p-harmonic `-forms in submanifolds of Nn+m with flat normal
bundle

Theorem 3.1. Let Mn (n ≥ 3) be a complete non-compact immersed subman-
ifold of Nn+m. Assume that M has flat normal bundle, N has pure curvature
tensor and the (`, n−`)-curvature of Rn+m is not less than −k for 1 ≤ ` ≤ n−1.
If one of the following conditions

1.

|A|2 ≤ n2|H|2 − 2k

Cn,`
, vol(M) =∞;

2.

n2|H|2 − 2k

Cn,`
< |A|2 ≤ n2|H|2

Cn,`
and λ1 >

kQ2

4(Q− 1 + (p− 1)2(Ap,n,` − 1))
;

3. the total curvature ‖A‖n is bounded by

‖A‖2n < min

{
n2

Cn,`CS
,

2

Cn,`CS

[
4(Q− 1 + (p− 1)2(Ap,n,` − 1))

Q2
− k

λ1(M)

]}
;

4. supM |A| is bounded and the fundamental tone satisfies

λ1(M) >
Q2(2k + Cn,` supM |A|2)

8(Q− 1 + (p− 1)2(Ap,n,` − 1))
,

holds true, then every p-harmonic `-form with finite LQ-energy, (Q ≥ 2) on M
is trivial.
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Proof. Let M+ := M \ {x ∈ M,ω(x) = 0}. Let ω be any p-harmonic `-form
with finite LQ norm. Applying the Bochner formula to the form |ω|p−2ω, we
obtain on M+

1

2
∆|ω|2(p−1)

= |∇(|ω|p−2ω)|2 −
〈
(δd+ dδ)(|ω|p−2ω), |ω|p−2ω

〉
+K`(|ω|p−2ω, |ω|p−2ω)

= |∇(|ω|p−2ω)|2 −
〈
δd(|ω|p−2ω), |ω|p−2ω

〉
+ |ω|2(p−2)K`(ω, ω),

where we used ω is p-harmonic in the second equality. This can be read as

|ω|p−1∆|ω|p−1

=
(
|∇(|ω|p−2ω)|2 − |∇|ω|p−1|2

)
− |ω|p−2

〈
δd(|ω|p−2ω), ω

〉
+ |ω|2(p−2)K`(ω, ω).

By Kato type inequality, we infer

(3.1)
|ω|∆|ω|p−1

≥ (p− 1)2(Ap,n,` − 1)|ω|p−2|∇|ω||2 −
〈
δd(|ω|p−2ω), ω

〉
+K`|ω|p.

Hence, for q = Q− p, we have

|ω|q+1∆|ω|p−1

≥ (p− 1)2(Ap,n,` − 1)|ω|p+q−2|∇|ω||2 −
〈
δd(|ω|p−2ω), |ω|qω

〉
+K`|ω|p+q.

We choose a cut-off function ϕ ∈ C∞0 (M+) then multiplying both sides of the
above inequality by ϕ2, we obtain∫

M+

ϕ2|ω|q+1∆|ω|p−1 ≥ (p− 1)2(Ap,n,` − 1)

∫
M+

φ2|ω|p+q−2|∇|ω||2

−
∫
M+

〈
δd(|ω|p−2ω), ϕ2|ω|qω

〉
+

∫
M+

K`ϕ
2|ω|p+q.

By integration by parts, this implies∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
≤ − (p− 1)2(Ap,n,` − 1)

∫
M+

φ2|ω|p+q−2|∇|ω||2

+

∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
−
∫
M+

K`ϕ
2|ω|p+q.(3.2)

Since the (`, n− `)-curvature of Nn+m is not less than −k, we have

K` ≥
1

2
(n2|H|2 −max{`, n− `}|A|2)− k.

Obviously,∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
= 2(p− 1)

∫
M+

ϕ|ω|p+q−1 〈∇ϕ,∇|ω|〉
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+ (q + 1)(p− 1)

∫
M+

ϕ2|ω|p+q−2|∇|ω||2.(3.3)

Note that for any closed `-form ω and smooth function f , it is proved in Lemma
2.5 that

|d(f ∧ ω)| = |df ∧ ω| ≤ |df | · |ω|.

Therefore,∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
=

∫
M+

〈
d(|ω|p−2) ∧ ω, d(ϕ2|ω|q) ∧ ω

〉
≤
∫
M+

∣∣d(|ω|p−2) ∧ ω| · |d(ϕ2|ω|q) ∧ ω
∣∣

≤
∫
M+

∣∣∇(|ω|p−2)
∣∣ |ω| · ∣∣∇(ϕ2|ω|q)

∣∣ |ω|
≤ (p− 2)q

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+ 2(p− 2)

∫
M+

ϕ|ω|p+q−1 |∇|ω|| |∇ϕ|.(3.4)

1. If |A|2 ≤ n2|H|2−2k
Cn,`

, then K` ≥ 0. Therefore, from (3.2) we obtain∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
≤ − (p− 1)2(Ap,n,` − 1)

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

+

∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
.

Thus, by (3.3), (3.4), we have

2(p− 1)

∫
M+

ϕ|ω|p+q−1 〈∇ϕ,∇|ω|〉+ (q + 1)(p− 1)

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

≤ − (p− 1)2(Ap,n,` − 1)

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

+ (p− 2)q

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2 + 2(p− 2)

∫
M+

ϕ|ω|p+q−1 |∇|ω|| |∇ϕ|.

Hence,

(p+ q − 1 + (p− 1)2(Ap,n,` − 1))

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

≤ 2(2p− 3)

∫
M+

ϕ|ω|p+q−1 |∇|ω|| |∇ϕ|.
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Using the fundamental inequality 2AB ≤ εA2 +ε−1B2, we have that, for every
ε > 0,

(3.5)

2

∫
M+

ϕ|ω|p+q−1 |∇|ω|| |∇ϕ|

≤ ε

∫
M+

ϕ2|ω|p+q−2|∇|ω||2 +
1

ε

∫
M+

|ω|p+q|∇ϕ|2.

From the last two inequalities, we obtain

(p+ q − 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3))

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

≤ 2p− 3

ε

∫
M+

|ω|p+q|∇ϕ|2.

Note that Q = p + q, since Q − 1 + (p − 1)2(Ap,n,` − 1) > 0, we can choose
ε > 0 small enough and a constant K = K(ε) > 0 so that

(3.6)
4

Q2

∫
M+

ϕ2
∣∣∣∇|ω|Q/2∣∣∣2 ≤ K ∫

M+

|ω|Q|∇ϕ|2 for all r > 0.

Applying a variation of the Duzaar-Fuchs cut-off method (see also [12,25]), we
shall show that (3.6) holds for every ϕ ∈ C∞0 (M). Indeed, we define

ηε̃ = min

{
|ω|
ε̃
, 1

}
for ε̃ > 0. Let ϕε̃ = ψ2ηε̃, where ψ ∈ C∞0 (M). It is easy to see that ϕε̃ is a
compactly supported continuous function and ϕε̃ = 0 on M \M+. Now, we
replace ϕ by ϕε̃ in (3.6) and get∫

M+

ψ4(ηε̃)
2|ω|Q−2|∇|ω||2

≤ 6C

∫
M+

|ω|Q|∇ψ|2ψ2(ηε̃)
2 + 3C

∫
M+

|ω|Q|∇ηε̃|2ψ4.(3.7)

Observe that ∫
M+

|ω|Q|∇ηε̃|2ψ4 ≤ ε̃Q−2
∫
M+

|∇|ω||2ψ4χ{|ω|≤ε̃}

and the right hand side vanishes by dominated convergence as ε̃→ 0, because
|∇|ω|| ∈ L2

loc(M) and Q ≥ 2. Letting ε̃→ 0 and applying Fatou lemma to the
integral on the left hand side and dominated convergence to the first integral
in the right hand side of (3.7), we obtain

(3.8)

∫
M+

ψ4|ω|Q−2|∇|ω||2 ≤ 6C

∫
M+

|ω|Q|∇ψ|2ψ2,
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where ψ ∈ C∞0 (M). We choose a cut-off function ψ ∈ C∞0 (M+) satisfying

ψ =


1, on Br,

∈ [0, 1] and |∇ϕ| ≤ 2
r , on B2r \Br,

0, on M \B2r,

where Br is the open ball of radius r and center at a fixed point of M .
Letting r → ∞, we conclude that |ω| is constant on M+. Since |ω| = 0 ∈

∂M+, it implies that either ω is zero; or M+ = ∅. If M+ = ∅, then |ω| is
constant on M . Thanks to the assumption |ω| ∈ LQ(M), we infer ω = 0.

2. Assume that

n2|H|2 − 2k

Cn,`
< |A|2 ≤ n2|H|2

Cn,`

then −k ≤ K` < 0. From this and (3.2) we obtain∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
≤ − (p− 1)2(Ap,n,` − 1)

∫
M+

|ω|p+q−2|∇|ω||2∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
+ k

∫
M+

ϕ2|ω|p+q.(3.9)

By the definition of λ1(M) and (3.5), we obtain that, for any ε > 0,

λ1

∫
M+

ϕ2|ω|p+q

≤
∫
M+

∣∣∣∇(ϕ|ω|(p+q)/2)∣∣∣2
=

(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2 +

∫
M+

|ω|p+q|∇ϕ|2

+ (p+ q)

∫
M+

ϕ|ω|p+q−1 〈∇|ω|,∇ϕ〉

≤ (1 + ε)
(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+

(
1 +

1

ε

)∫
M+

|ω|p+q|∇ϕ|2.(3.10)

From this, (3.3), (3.4), and (3.9), we have

Cε

∫
M+

ϕ2|ω|p+q−2|∇|ω||2 ≤ Dε

∫
M+

|ω|p+q|∇ϕ|2,
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where

Cε : = p+ q − 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3)− (1 + ε)
k(p+ q)2

4λ1(M)

= Q− 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3)− (1 + ε)
kQ2

4λ1(M)
,

and

Dε :=
2p− 3

ε
+

k

λ1(M)

(
1 +

1

ε

)
.

Here Q = p+ q ≥ 2. Since

λ1(M) >
kQ2

4(Q− 1 + (p− 1)2(Ap,n,` − 1))
,

there are some small enough number ε > 0 and constant K = K(ε) > 0 such
that

4

Q2

∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ≤ K ∫
M+

|ω|Q|∇ϕ|2.

Arguing similarly as in the proof of the first part, we conclude that |ω| is
constant. Since λ1(M) > 0, M must have infinite volume, note that |ω| ∈
LQ(M), we have that ω is zero.

3. Due to the previous two cases, we may assume that |A|2 > n2|H|2
Cn,`

. Then,

from (3.2) we have∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
+
n2

2

∫
M+

ϕ2|H|2|ω|p+q

≤ − (p− 1)2(Ap,n,` − 1)

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

+

∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
+
Cn,`

2

∫
M+

ϕ2|A|2|ω|p+q

+ k

∫
M+

ϕ2|ω|p+q.(3.11)

By Hölder inequality and Lemma 2.1, we have∫
M+

ϕ2|A|2|ω|p+q ≤ ‖A‖2n

(∫
M+

(
ϕ|ω|(p+q)/2

) 2n
n−2

)n−2
n

≤ CS‖A‖2n

(∫
M+

∣∣∣∇(ϕ|ω|(p+q)/2)∣∣∣2 +

∫
M+

ϕ2|H|2|ω|p+q
)
,

where CS is the Sobolev constant depending only on n. From the last inequality
and (3.5) we can get that, for any ε > 0,∫

M+

ϕ2|A|2|ω|p+q
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≤ CS‖A‖2n(1 + ε)
(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+ CS‖A‖2n
(

1 +
1

ε

)∫
M+

|ω|p+q|∇ϕ|2 + CS‖A‖2n
∫
M+

ϕ2|H|2|ω|p+q.

Using this inequality and (3.3), (3.4), (3.11), we have

Cε

∫
M+

ϕ2|ω|p+q−2|∇|ω||2 +
1

2

(
n2 − Cn,`CS‖A‖2n

) ∫
M+

ϕ2|H|2|ω|p+q

≤ Dε

∫
M+

|ω|p+q|∇ϕ|2,

where, for Q = p+ q ≥ 2

Cε := p+ q − 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3)

− (1 + ε)
(p+ q)2

4

(
k

λ1(M)
+
Cn,`CS‖A‖2n

2

)
= Q− 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3)

− (1 + ε)
Q2

4

(
k

λ1(M)
+
Cn,`CS‖A‖2n

2

)
,

and

Dε :=
2p− 3

ε
+

(
1 +

1

ε

)(
k

λ1(M)
+
Cn,`CS‖A‖2n

2

)
.

Since

‖A‖2n < min

{
n2

Cn,`CS
,

2

Cn,`CS

[
4(Q− 1 + (p− 1)2(Ap,n,` − 1))

Q2
− k

λ1(M)

]}
,

there are some small enough ε > 0 and constant K = K(ε) > 0 such that

4

Q2

∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ϕ2 ≤ K
∫
M+

|ω|Q|∇ϕ|2.

Using the same arguments as in the proof of the first and second part, this
inequality implies that ω is zero.

4. Suppose that supM |A|2 < ∞. Then using (3.10) we have that, for any
ε > 0,∫

M+

ϕ2|A|2|ω|p+q ≤ sup
M
|A|2

∫
M+

ϕ2|ω|p+q

≤ supM |A|2

λ1(M)

∫
M+

∣∣∣∇(ϕ|ω|(p+q)/2)∣∣∣2
≤ supM |A|2

λ1(M)
(1 + ε)

(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+
supM |A|2

λ1(M)

(
1 +

1

ε

)∫
M+

|ω|p+q|∇ϕ|2.
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From this and (3.3), (3.4), (3.11) we obtain that, for any ε > 0,

Cε

∫
M+

ϕ2|ω|p+q−2|∇|ω||2 +
n2

2

∫
M+

ϕ2|H|2|ω|p+q ≤ Dε

∫
M+

|ω|p+q|∇ϕ|2,

where

Cε := p+ q − 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3)

− (1 + ε)
(p+ q)2

4λ1(M)

(
k +

Cn,` supM |A|2

2

)
= Q− 1 + (p− 1)2(Ap,n,` − 1)− ε(2p− 3)

− (1 + ε)
Q2

4λ1(M)

(
k +

Cn,` supM |A|2

2

)
,

and

Dε :=
2p− 3

ε
+

(
1 +

1

ε

)
1

λ1(M)

(
k +

Cn,` supM |A|2

2

)
.

Since

λ1(M) >
Q2(2k + Cn,` supM |A|2)

8(Q− 1 + (p− 1)2(Ap,n,` − 1))
,

M must have infinite volume. Moreover, there are some small enough ε > 0
and constant K = K(ε) > 0 such that

4

Q2

∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ϕ2 ≤ K
∫
M+

|ω|Q|∇ϕ|2.

Using the same arguments as in the proof of the first and second part, this
inequality also implies that ω is zero. �

Now, we will give a proof of Theorem 1.2 which is a geometric application
of Theorem 3.1. First, let us recall the following result about the existence of
p-harmonic functions on a Riemannian manifold.

Theorem 3.2 ([4]). Let M be a Riemannian manifold with at least two p-
nonparabolic ends. Then, there exists a non-constant, bounded p-harmonic
function u ∈ C1,α(M) for some α > 0 such that |∇u| ∈ Lp(M).

Note that, it is known that the regularity of (weakly) p-harmonic function u

is not better than C1,αloc (see [30] and the references therein). Moreover u ∈W 2,2
loc

if p ≥ 2; u ∈ W 2,p
loc if 1 < p < 2 (see [30]). In fact, any nontrivial (weakly)

p-harmonic function u on M is smooth away from the set {∇u = 0} which has
n-dimensional Hausdorff measure zero.

Proof of Theorem 1.2. The proof follows by applying Theorem 3.1 with q =
0, l = 1 and using Theorem 3.2. �
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4. p-harmonic `-forms on Riemannian manifolds with a weighted
Poincaré inequality

Lemma 4.1. Let M be a complete Riemannian manifold satisfying a weighted
Poincaré inequality with a continuous positive weighted function ρ. Suppose
that ω is a closed `-form with finite LQ norm (Q ≥ 2) on M satisfies the
following differential inequality

(4.1) |ω|∆|ω|p−1 ≥ B|ω|p−2 |∇|ω||2 −
〈
δd(|ω|p−2ω), ω

〉
− aρ|ω|p − b|ω|p

for some constants 0 < a < 4(Q−1+B)
Q2 , b > 0 and Q ≥ 2. Then the following

integral inequality holds

(4.2)

∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ≤ bQ2

4(Q− 1 +B)− aQ2

∫
M+

|ω|Q.

Moreover, if equality holds in (4.2), then equality holds in (4.1)

Proof. (i) Assume that the manifold is compact. Let q = Q − p, multiplying
inequality (4.1) by |ω|q and then integrating by parts, we obtain∫

M+

|ω|q+1∆|ω|p−1 ≥ B

∫
M+

|ω|p+q−2 |∇|ω||2 −
∫
M+

〈
δd(|ω|p−2ω), |ω|qω

〉
− a

∫
M+

ρ|ω|p+q − b
∫
M+

|ω|p+q,

and then,

[(q + 1)(p− 1) +B]

∫
M+

|ω|p+q−2 |∇|ω||2 ≤
∫
M+

〈
d(|ω|p−2ω), d(|ω|qω)

〉
+ a

∫
M+

ρ|ω|p+q + b

∫
M+

|ω|p+q.

Similarly to (3.4), we have∫
M+

〈
d(|ω|p−2ω), d(|ω|qω)

〉
=

∫
M+

〈
d(|ω|p−2) ∧ ω, d(|ω|q) ∧ ω

〉
≤
∫
M+

∣∣d(|ω|p−2) ∧ ω|.|d(|ω|q) ∧ ω
∣∣

≤
∫
M+

∣∣∇(|ω|p−2)
∣∣ |ω|. |∇(|ω|q)| |ω|

= (p− 2)q

∫
M+

|ω|p+q−2 |∇|ω||2 .

By the weighted Poincaré inequality we have that∫
M+

ρ|ω|p+q ≤
∫
M+

∣∣∣∇(|ω|(p+q)/2)∣∣∣2 =
(p+ q)2

4

∫
M+

|ω|p+q−2 |∇|ω||2 .
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Combining the last three inequalities, we obtain[
p+ q − 1 +B − a (p+ q)2

4

] ∫
M+

|ω|p+q−2 |∇|ω||2 ≤ b
∫
M+

|ω|p+q,

consequently,[
4(p+ q − 1 +B)

(p+ q)2
− a
] ∫

M+

∣∣∣∇|ω|(p+q)/2∣∣∣2 ≤ b∫
M+

|ω|p+q.

Now assume that equality holds in (4.2). Multiplying inequality (4.1) by |ω|q
where q = Q− p, and then integrating by parts and using the above estimates,
we obtain

0 ≤
∫
M+

(
|ω|q+1∆|ω|p−1 −B|ω|p+q−2 |∇|ω||2 +

〈
δd(|ω|p−2ω), |ω|qω

〉
+aρ|ω|p+q + b|ω|p+q

)
= − [(q + 1)(p− 1) +B]

∫
M+

|ω|p+q−2 |∇|ω||2 +

∫
M+

〈
d(|ω|p−2ω), d(|ω|qω)

〉
+ a

∫
M+

ρ|ω|p+q + b

∫
M+

|ω|p+q

≤ −
[

4(p+ q − 1 +B)

(p+ q)2
− a
] ∫

M+

∣∣∣∇|ω|(p+q)/2∣∣∣2 + b

∫
M+

|ω|p+q

= 0.

Therefore, we can conclude that equality holds in (4.1) in M+. Since in M\M+,
(4.1) is always true. We complete the proof.

(ii) Assume that the manifold is non-compact. We choose a cut-off func-
tion ϕ ∈ C∞0 (M+) as in the proof of Theorem 3.1. Multiplying both sides of
inequality (4.1) by ϕ2|ω|q and then integrating by parts, we obtain∫

M+

ϕ2|ω|q+1∆|ω|p−1

≥ B

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2 −
∫
M+

〈
δd(|ω|p−2ω), ϕ2|ω|qω

〉
− a

∫
M+

ρϕ2|ω|p+q − b
∫
M+

ϕ2|ω|p+q,

and then,∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
+B

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

≤
∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
+ a

∫
M+

ρϕ2|ω|p+q + b

∫
M+

ϕ2|ω|p+q.
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Using the last inequality and (3.3), (3.4), we have

(p+ q − 1 +B)

∫
M+

ϕ2|ω|p+q−2|∇|ω||2

≤ a

∫
M+

ρϕ2|ω|p+q + b

∫
M+

ϕ2|ω|p+q

+ 2(2p− 3)

∫
M+

ϕ|ω|p+q−1 |∇|ω|| |∇ϕ|.

Similarly to (3.10) and by the weighted Poincaré inequality we have that∫
M+

ρϕ2|ω|p+q ≤
∫
M+

∣∣∣∇(ϕ|ω|(p+q)/2)∣∣∣2
≤ (1 + ε)

(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+

(
1 +

1

ε

)∫
M+

|ω|p+q|∇ϕ|2.

Combining the last two inequalities and using (3.5), we obtain[
p+ q − 1 +B − ε(2p− 3)− (1 + ε)

a(p+ q)2

4

] ∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

≤ b

∫
M+

ϕ2|ω|p+q +

[
2p− 3

ε
+ a

(
1 +

1

ε

)]∫
M+

|ω|p+q|∇ϕ|2.

Since 4(p+ q − 1 +B)− a(p+ q)2 > 0,

p+ q − 1 +B − (1 + ε)
a(p+ q)2

4
− ε(2p− 3) > 0

for all sufficiently small enough ε > 0. By the monotone convergence theorem,
letting r →∞, and then ε→ 0, we obtain inequality (4.2).

Now suppose that equality in (4.2) holds. Multiplying both sides of inequal-
ity (4.1) by ϕ2|ω|q and then integrating by parts and using the above estimates,
we obtain

0 ≤
∫
M+

ϕ2
(
|ω|q+1∆|ω|p−1 −B|ω|p+q−2 |∇|ω||2 +

〈
δd(|ω|p−2ω), |ω|qω

〉
+aρ|ω|p+q + b|ω|p+q

)
≤ − [p+ q − 1 +B]

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+ 2(2p− 3)

∫
M+

ϕ|ω|p+q−1|∇|ω|| |∇ϕ|

+ a

∫
M+

ρϕ2|ω|p+q + b

∫
M+

ϕ2|ω|p+q
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≤ −
[
p+ q − 1 +B − ε(2p− 3)− (1 + ε)

a(p+ q)2

4

] ∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+ b

∫
M+

ϕ2|ω|p+q +

[
2p− 3

ε
+ a

(
1 +

1

ε

)]∫
M+

|ω|p+q|∇ϕ|2.

Letting r → ∞ in the last inequality and using the monotone convergence
theorem, we get

0 ≤
∫
M+

(
|ω|q+1∆|ω|p−1 −B|ω|p+q−2 |∇|ω||2 +

〈
δd(|ω|p−2ω), |ω|qω

〉
+aρ|ω|p+q + b|ω|p+q

)
≤ −

[
p+ q − 1 +B − ε(2p− 3)− (1 + ε)

a(p+ q)2

4

] ∫
M+

|ω|p+q−2 |∇|ω||2

+ b

∫
M+

|ω|p+q.

And then putting ε→ 0, we obtain

0 ≤
∫
M+

(
|ω|q+1∆|ω|p−1 −B|ω|p+q−2 |∇|ω||2 +

〈
δd(|ω|p−2ω), |ω|qω

〉
+aρ|ω|p+q + b|ω|p+q

)
≤ −

[
p+ q − 1 +B − a(p+ q)2

4

] ∫
M+

|ω|p+q−2 |∇|ω||2 + b

∫
M+

|ω|p+q

= 0.

In view of (4.1), we can conclude that equality holds in (4.1). �

In order to derive main results of this section, we need to have the following
result which was showed by Vieira in [31].

Lemma 4.2 ([31]). Suppose that u is a smooth function on a complete Rie-
mannian manifold M with finite LQ norm, for Q ≥ 2. Then

λ1(M)

∫
M

|u|Q ≤
∫
M

∣∣∣∇uQ/2∣∣∣2 .
Theorem 4.3. Let Mn be a complete non-compact Riemannian manifold Mn

satisfying a weighted Poincaré inequality with a continuous positive weighted
function ρ. Suppose that the curvature operator acting on `-forms has a lower
bound

K` ≥ −aρ− b
for some constants b > 0, Q ≥ 2 and

0 < a <
4(Q− 1 + (p− 1)2(Ap,n,` − 1))

Q2
.
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Assume that the first eigenvalue of the Laplacian has a lower bound

λ1(Mn) >
bQ2

4(Q− 1 + (p− 1)2(Ap,n,` − 1))− aQ2
.

Then the space of p-harmonic `-forms with finite LQ energy on Mn is trivial.

Proof. Let ω be any p-harmonic `-form with finite LQ norm. From the Bochner
formula and the Kato type inequality (see, Lemma 2.2), we obtain (3.1)

|ω|∆|ω|p−1 ≥ (p− 1)2(Ap,n,` − 1)|ω|p−2 |∇|ω||2 −
〈
δd(|ω|p−2ω), ω

〉
+K`|ω|p.

Hence,

|ω|∆|ω|p−1 ≥ (p−1)2(Ap,n,`−1)|ω|p−2 |∇|ω||2−
〈
δd(|ω|p−2ω), ω

〉
−aρ|ω|p−b|ω|p.

Applying Lemma 4.1 to B = (p− 1)2(Ap,n,` − 1), we obtain∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ≤ bQ2

4(Q− 1 + (p− 1)2(Ap,n,` − 1))− aQ2

∫
M+

|ω|Q.

Since |ω| ∈ LQ(M) this implies |ω| ∈ LQ(M+). Therefore, by Lemma 4.2, we
have

λ1(Mn)

∫
M+

|ω|Q ≤
∫
M+

∣∣∣∇ωQ/2∣∣∣2 .
From the last two inequalities, we obtain

λ1(Mn)

∫
M+

|ω|Q ≤ bQ2

4(Q− 1 + (p− 1)2(Ap,n,` − 1))− aQ2

∫
M+

|ω|Q.

If the `-form ω is not identically zero in M+ (therefore ω = 0 in M), then

λ1(Mn) ≤ bQ2

4(Q− 1 + (p− 1)2(Ap,n,` − 1))− aQ2
,

which leads to a contradiction. So ω is identically zero. �

Combining Theorem 3.2 and Theorem 4.3 with Q = p ≥ 2, ` = 1, we obtain
the follows result.

Corollary 4.4. Let Mn be a complete non-compact Riemannian manifold Mn

satisfying a weighted Poincaré inequality with a continuous positive weighted
function ρ. Suppose that

RicM ≥ −aρ− b for 0 < a <
4(p− 1)(p+ n− 2)

p2(n− 1)

and some constant b > 0. Assume that the first eigenvalue of the Laplacian has
a lower bound

λ1(Mn) >
bp2(n− 1)

4(p− 1)(n+ p− 2)− ap2(n− 1)
.

Then the space of Lp p-harmonic 1-forms on Mn is trivial. Therefore, M has
at most one p-nonparabolic end.
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Let

An,` =


n− `+ 1

n− `
, if 1 ≤ ` ≤ n

2 ,

`+ 1

`
, if n

2 ≤ ` ≤ n− 1.

We conclude this section by the below rigidity property.

Corollary 4.5. Let Mn be a complete non-compact Riemannian manifold Mn

satisfying a weighted Poincaré inequality with a continuous positive weighted
function ρ. Suppose that

RicM ≥ −aρ− b for 0 < a < An,`

and some constant b > 0. Assume that

λ1(Mn) =
b

An,` − a
.

Then either

(1) The space of L2 harmonic `-forms on Mn is trivial or;
(2) For any L2 harmonic `-form ω on M , there exixts a 1-form α such that

∇ω = α⊗ ω − 1√
`+ 1

θ1(α ∧ ω) +
1√

n+ 1− `
θ2(iαω).

Proof. Let p = 2, q = 0, Q = 2, the Bochner formula applying on harmonic
`-form ω implies that

|ω|∆|ω| ≥ (An,` − 1)|∇|ω||2 − aρ|ω|2 − b|ω|2.

If ω is non-trivial, then Lemma 4.1 and Lemma 4.2 imply that

λ1(M)

∫
M+

|ω|2 =

∫
M+

|∇|ω||2.

Therefore,

|ω|∆|ω| = (An,` − 1)|∇|ω||2 − aρ|ω|2 − b|ω|2

on M+, hence it holds true on M . This means that the equality in the Kato
type inequality (2.1) holds true. By Lemma 2.2, we are done. �

5. p-harmonic 1-forms on locally conformally flat Riemannian
manifolds

In this section we will prove a vanishing theorem for p-harmonic 1-forms
with finite LQ energy (Q ≥ 2). We will use the following auxiliary lemmas.

It is known that a simply connected, locally conformally flat manifold Mn,
n ≥ 3, has a conformal immersion into Sn, and according to [26], the Yamabe
constant of Mn satisfies

Y(Mn) = Y(Sn) =
n(n− 2)ω

2/n
n

4
,
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where ωn is the volume of the unit sphere in Rn. Therefore the following
inequality

(5.1) Y(Sn)

(∫
M

f
2n

n−2 dv

)n−2
n

≤
∫
M

|∇f |2dv +
n− 2

4(n− 1)

∫
M

Rf2dv

holds for all f ∈ C∞0 (M). By (5.1), it is easy to obtain the following lemma.

Lemma 5.1. Let (Mn, g), n ≥ 3, be an n-dimensional complete, simply con-
nected, locally conformally flat Riemannian manifold with R ≤ 0 or ‖R‖n/2 <
∞. Then the following L2 Sobolev inequality(∫

M

f
2n

n−2 dv

)n−2
n

≤ S
∫
M

|∇f |2dv, ∀f ∈ C∞0 (M),

holds for some constant S > 0, which is equal to Y(Sn)−1 in the case of R ≤ 0.
In particular, M has infinite volume.

In [21], the Ricci curvature is estimated as follows.

Lemma 5.2 ([21]). Let (Mn, g) be an n-dimensional complete Riemannian
manifold. Then

Ric ≥ −|T |g − |R|√
n
g

in the sense of quadratic forms. Here T stands for the traceless tensor, namely

T = Ric−R
n
g.

Now, we introduce the main result of this section.

Theorem 5.3. Let (Mn, g), n ≥ 3, be an n-dimensional complete, simply
connected, locally conformally flat Riemannian manifold. If one of the following
conditions

1.

‖T‖n/2 +
‖R‖n/2√

n
<

4(Q− 1 + κp)

SQ2
;

2. the scalar curvature R is nonpositive,

Kp,Q,n :=
Q− 1 + κp

Q2
− n− 1√

n(n− 2)
> 0,

and

‖T‖n/2 <
4Kp,Q,n

S
= 4Kp,Q,nY(Sn);

holds true, then every p-harmonic 1-form with finite LQ(Q ≥ 2) norm on M
is trivial. Here

κp = min

{
1,

(p− 1)2

n− 1

}
.
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Proof. Since M satisfies a Sobolev inequality, M must have infinite volume.
Therefore, as in the previous part, we only need to prove that if ω is any p-
harmonic 1-form with finite LQ-norm, then ω = 0 in M+. Now, applying the
Bochner formula to the form |ω|p−2ω, we have

1

2
∆|ω|2(p−1) =

∣∣∇ (|ω|p−2ω)∣∣2 − 〈δd(|ω|p−2ω), |ω|p−2ω
〉

+ |ω|2(p−2) Ric(ω, ω).

From this and Lemma 5.2 and the Kato type inequality (see, Lemma 2.2), we
obtain

|ω|∆|ω|p−1 ≥ κp|ω|p−2 |∇|ω||2 −
〈
δd(|ω|p−2ω), ω

〉
− |T ||ω|p − |R|√

n
|ω|p.

We choose a cut-off function ϕ ∈ C∞0 (M+) as in the proof of Theorem 3.1.
Multiplying both sides of the last inequality by ϕ2|ω|q, (q = Q − p) and then
integrating by parts, we obtain∫

M+

ϕ2|ω|q+1∆|ω|p−1

≥ κp

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2 −
∫
M+

〈
δd(|ω|p−2ω), ϕ2|ω|qω

〉
−
∫
M+

|T |ϕ2|ω|p+q − 1√
n

∫
M+

|R|ϕ2|ω|p+q,

and then,∫
M+

〈
∇(ϕ2|ω|q+1),∇|ω|p−1

〉
+ κp

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

≤
∫
M+

〈
d(|ω|p−2ω), d(ϕ2|ω|qω)

〉
+

∫
M+

|T |ϕ2|ω|p+q +
1√
n

∫
M+

|R|ϕ2|ω|p+q.

By the hypotheses and Lemma 5.1, we obtain that, for some constant S > 0
and all functions f ∈ C∞0 (M),(∫

M+

f
2n

n−2 dv

)n−2
n

≤ S
∫
M+

|∇f |2dv.

Using this and (3.10), we have that, for any ε > 0,∫
M+

|T |ϕ2|ω|p+q ≤ ‖T‖n/2

(∫
M+

(
ϕ|ω|(p+q)/2

) 2n
n−2

)n−2
n

≤ S‖T‖n/2
∫
M+

∣∣∣∇(ϕ|ω|(p+q)/2)∣∣∣2
≤ S‖T‖n/2(1 + ε)

(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2
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+ S‖T‖n/2
(

1 +
1

ε

)∫
M+

|ω|p+q|∇ϕ|2.(5.2)

From (3.3), (3.4), (3.5) and (5.2) we obtain that, for any ε > 0,

[
+q−1 +κp−ε(2p− 3)−S‖T‖n/2(1+ε)

(p+q)2

4

] ∫
M+

ϕ2|ω|p+q−2|∇|ω||2
(5.3)

≤
[
κp
ε

+S‖T‖n/2
(

1+
1

ε

)]∫
M+

|ω|p+q|∇ϕ|2 +
1√
n

∫
M+

ϕ2|R||ω|p+q.

For the last term in the right hand side of (5.3), we can estimate in the fol-
lowing two ways corresponding to the hypotheses of Theorem 5.3, respectively.

1. Similarly to (5.2), we have that, for any ε > 0,∫
M+

|R|ϕ2|ω|p+q ≤ S‖R‖n/2(1 + ε)
(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+ S‖R‖n/2
(

1 +
1

ε

)∫
M+

|ω|p+q|∇ϕ|2.

Consequently, for any ε > 0,

Cε

∫
M+

ϕ2|ω|p+q−2|∇|ω||2 ≤ Dε

∫
M+

|ω|p+q|∇ϕ|2,

where

Cε : = p+ q − 1 + κp − ε(2p− 3)− S(1 + ε)
(p+ q)2

4

(
‖T‖n/2 +

‖R‖n/2√
n

)
= Q− 1 + κp − ε(2p− 3)− S(1 + ε)

Q2

4

(
‖T‖n/2 +

‖R‖n/2√
n

)
and

Dε :=
2p− 3

ε
+ S

(
1 +

1

ε

)(
‖T‖n/2 +

‖R‖n/2√
n

)
.

Since

‖T‖n/2 +
‖R‖n/2√

n
<

4(Q− 1 + κp
SQ2

,

there are some small enough ε > 0 and constant K = K(ε) > 0 such that

4

Q2

∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ϕ2 ≤ K
∫
M+

|ω|Q|∇ϕ|2.

Using the same argument as in the proof of the first part of Theorem 3.1, this
inequality implies that ω is zero.

2. If the scalar curvature R is nonpositive, then from (5.1) we have that∫
M+

|R|f2dv ≤ 4(n− 1)

n− 2

∫
M+

|∇f |2dv, ∀f ∈ C∞0 (M).
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From this and (3.10), we have that, for any ε > 0,∫
M+

|R|ϕ2|ω|p+q ≤ 4(n− 1)

n− 2

∫
M+

|∇(ϕ|ω|(p+q)/2)|2

≤ 4(n− 1)

n− 2
(1 + ε)

(p+ q)2

4

∫
M+

ϕ2|ω|p+q−2 |∇|ω||2

+
4(n− 1)

n− 2

(
1 +

1

ε

)∫
M+

|ω|p+q|∇ϕ|2.

Substituting this inequality into (5.3), we yield that, for any ε > 0,

Cε

∫
M+

ϕ2|ω|p+q−2|∇|ω||2 ≤ Dε

∫
M+

|ω|p+q|∇ϕ|2,

where

Cε : = p+ q − 1 + κp − ε(2p− 3)− (1 + ε)
(p+ q)2

4

(
S‖T‖n/2 +

4(n− 1)

(n− 2)
√
n

)
= Q− 1 + κp − ε(2p− 3)− (1 + ε)

Q2

4

(
S‖T‖n/2 +

4(n− 1)

(n− 2)
√
n

)
,

and

Dε :=
2p− 3

ε
+

(
1 +

1

ε

)(
S‖T‖n/2 +

4(n− 1)

(n− 2)
√
n

)
.

Since

Kp,Q,n :=
Q− 1 + κp

Q2
− n− 1√

n(n− 2)
> 0

and

‖T‖n/2 <
4Kp,Q,n

S
,

there are some small enough ε > 0 and constant K = K(ε) > 0 such that

4

Q2

∫
M+

∣∣∣∇|ω|Q/2∣∣∣2 ϕ2 ≤ K
∫
M+

|ω|Q|∇ϕ|2.

As in previous part, we infer that ω = 0. The proof is complete. �

Note that when q = 0, we recover Theorem 1.3 and Theorem 1.4 in [21].
Hence, Theorem 5.3 can be considered as a generalization of Lin’s results to
the nonlinear setting. Now, we give a simple proof of Theorem 1.3.

Proof of Theorem 1.3. The proof follows by combining Theorem 3.2 and The-
orem 5.3 with Q = p. �
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H. Poincaré Anal. Non Linéaire 7 (1990), no. 5, 385–405.
[13] D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian sub-

manifolds, Comm. Pure Appl. Math. 27 (1974), 715–727.
[14] B. Kotschwar and L. Ni, Local gradient estimates of p-harmonic functions, 1/H-flow,
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