DOI QR코드

DOI QR Code

VANISHING PROPERTIES OF p-HARMONIC ℓ-FORMS ON RIEMANNIAN MANIFOLDS

  • Nguyen, Thac Dung (Department of Mathematics Mechanics and Informatics College of Science Viet Nam National University) ;
  • Pham, Trong Tien (Department of Mathematics Mechanics and Informatics College of Science Viet Nam National University)
  • Received : 2017.09.04
  • Accepted : 2018.06.07
  • Published : 2018.09.01

Abstract

In this paper, we show several vanishing type theorems for p-harmonic ${\ell}$-forms on Riemannian manifolds ($p{\geq}2$). First of all, we consider complete non-compact immersed submanifolds $M^n$ of $N^{n+m}$ with flat normal bundle, we prove that any p-harmonic ${\ell}$-form on M is trivial if N has pure curvature tensor and M satisfies some geometric conditions. Then, we obtain a vanishing theorem on Riemannian manifolds with a weighted $Poincar{\acute{e}}$ inequality. Final, we investigate complete simply connected, locally conformally flat Riemannian manifolds M and point out that there is no nontrivial p-harmonic ${\ell}$-form on M provided that the Ricci curvature has suitable bound.

Keywords

Acknowledgement

Supported by : NAFOSTED

References

  1. D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214-255. https://doi.org/10.1006/jfan.2000.3563
  2. G. Carron, Une suite exacte en $L^2$-cohomologie, Duke Math. J. 95 (1998), no. 2, 343-372. https://doi.org/10.1215/S0012-7094-98-09510-2
  3. G. Carron, $L^2$ harmonic forms on non-compact Riemannian manifolds, in Surveys in analysis and operator theory (Canberra, 2001), 49-59, Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, 2002.
  4. S.-C. Chang, J.-T. Chen, and S. W. Wei, Liouville properties for p-harmonic maps with finite q-energy, Trans. Amer. Math. Soc. 368 (2016), no. 2, 787-825. https://doi.org/10.1090/tran/6351
  5. L.-C. Chang, C.-L. Guo, and C.-J. A. Sung, p-harmonic 1-forms on complete manifolds, Arch. Math. (Basel) 94 (2010), no. 2, 183-192. https://doi.org/10.1007/s00013-009-0079-3
  6. J.-T. R. Chen and C.-J. A. Sung, Harmonic forms on manifolds with weighted Poincare inequality, Pacific J. Math. 242 (2009), no. 2, 201-214. https://doi.org/10.2140/pjm.2009.242.201
  7. D. Cibotaru and P. Zhu, Refined Kato inequalities for harmonic fields on Kahler manifolds, Pacific J. Math. 256 (2012), no. 1, 51-66. https://doi.org/10.2140/pjm.2012.256.51
  8. N. T. Dung, p-harmonic ${\ell}$-forms on Riemannian manifolds with a weighted Poincare inequality, Nonlinear Anal. 150 (2017), 138-150. https://doi.org/10.1016/j.na.2016.11.008
  9. N. T. Dung and N. D. Dat, Weighted p-harmonic functions and rigidity of smooth metric measure spaces, J. Math. Anal. Appl. 443 (2016), no. 2, 959-980. https://doi.org/10.1016/j.jmaa.2016.05.065
  10. N. T. Dung and K. Seo, p-harmonic functions and connectedness at infinity of complete submanifolds in a Riemannian manifold, Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1489-1511. https://doi.org/10.1007/s10231-016-0625-0
  11. N. T. Dung and C.-J. A. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794. https://doi.org/10.1090/S0002-9939-2014-11971-X
  12. F. Duzaar and M. Fuchs, On removable singularities of p-harmonic maps, Ann. Inst. H. Poincare Anal. Non Lineaire 7 (1990), no. 5, 385-405. https://doi.org/10.1016/S0294-1449(16)30283-9
  13. D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.
  14. B. Kotschwar and L. Ni, Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula, Ann. Sci. Ec. Norm. Super. (4) 42 (2009), no. 1, 1-36. https://doi.org/10.24033/asens.2089
  15. K.-H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062. https://doi.org/10.1090/S0002-9947-10-04894-4
  16. P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 4, 451-468. https://doi.org/10.24033/asens.1392
  17. P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134, Cambridge University Press, Cambridge, 2012.
  18. P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534. https://doi.org/10.4310/jdg/1090348357
  19. P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006), no. 6, 921-982. https://doi.org/10.1016/j.ansens.2006.11.001
  20. H. Lin, On the structure of submanifolds in Euclidean space with flat normal bundle, Results Math. 68 (2015), no. 3-4, 313-329. https://doi.org/10.1007/s00025-015-0435-5
  21. H. Lin, On the structure of conformally flat Riemannian manifolds, Nonlinear Anal. 123/124 (2015), 115-125. https://doi.org/10.1016/j.na.2015.05.001
  22. H. Lin, $L^2$ harmonic forms on submanifolds in a Hadamard manifold, Nonlinear Anal. 125 (2015), 310-322. https://doi.org/10.1016/j.na.2015.05.022
  23. H. Lin, On the structure of submanifolds in the hyperbolic space, Monatsh. Math. 180 (2016), no. 3, 579-594. https://doi.org/10.1007/s00605-015-0851-3
  24. R. Moser, The inverse mean curvature flow and p-harmonic functions, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 1, 77-83.
  25. N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303-312.
  26. R. Schoen and S.-T. Yau, Lectures on differential geometry, translated from the Chinese by Ding and S. Y. Cheng, with a preface translated from the Chinese by Kaising Tso, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994.
  27. K. Seo, $L^p$ harmonic 1-forms and first eigenvalue of a stable minimal hypersurface, Pacific J. Math. 268 (2014), no. 1, 205-229. https://doi.org/10.2140/pjm.2014.268.205
  28. C.-J. A. Sung and J.Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math. Res. Lett. 21 (2014), no. 4, 885-904. https://doi.org/10.4310/MRL.2014.v21.n4.a14
  29. S. Tanno, $L^2$ harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan 48 (1996), no. 4, 761-768. https://doi.org/10.2969/jmsj/04840761
  30. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126-150. https://doi.org/10.1016/0022-0396(84)90105-0
  31. M. Vieira, Vanishing theorems for $L^2$ harmonic forms on complete Riemannian manifolds, Geom. Dedicata 184 (2016), 175-191. https://doi.org/10.1007/s10711-016-0165-1
  32. T. Y. H. Wan and Y. L. Xin, Vanishing theorems for conformally compact manifolds, Comm. Partial Differential Equations 29 (2004), no. 7-8, 1267-1279. https://doi.org/10.1081/PDE-200033728
  33. X. Wang, On the $L^2$-cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), no. 2, 311-327. https://doi.org/10.1215/S0012-7094-02-11523-3
  34. X. Zhang, A note on p-harmonic 1-forms on complete manifolds, Canad. Math. Bull. 44 (2001), no. 3, 376-384. https://doi.org/10.4153/CMB-2001-038-2
  35. P. Zhu, Harmonic two-forms on manifolds with non-negative isotropic curvature, Ann. Global Anal. Geom. 40 (2011), no. 4, 427-434. https://doi.org/10.1007/s10455-011-9265-1
  36. P. Zhu, $L^2$-harmonic forms and stable hypersurfaces in space forms, Arch. Math. (Basel) 97 (2011), no. 3, 271-279. https://doi.org/10.1007/s00013-011-0281-y
  37. P. Zhu, Rigidity of complete minimal hypersurfaces in the Euclidean space, Results Math. 71 (2017), no. 1-2, 63-71. https://doi.org/10.1007/s00025-015-0513-8