• Title/Summary/Keyword: global attractor

Search Result 33, Processing Time 0.033 seconds

ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.505-518
    • /
    • 2014
  • Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

GLOBAL ATTRACTOR OF THE WEAKLY DAMPED WAVE EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

  • Zhu, Chaosheng
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.97-106
    • /
    • 2012
  • In this paper, the main purpose is to study existence of the global attractors for the weakly damped wave equation with nonlinear boundary conditions. To this end, we first show that the existence o a bounded absorbing set by the perturbed energy method. Secondly, we utilize the decomposition of the solution operator to verify the asymptotic compactness.

THE CONE PROPERTY FOR A CLASS OF PARABOLIC EQUATIONS

  • KWAK, MINKYU;LKHAGVASUREN, BATAA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • In this note, we show that the cone property is satisfied for a class of dissipative equations of the form $u_t={\Delta}u+f(x,u,{\nabla}u)$ in a domain ${\Omega}{\subset}{\mathbb{R}}^2$ under the so called exactness condition for the nonlinear term. From this, we see that the global attractor is represented as a Lipshitz graph over a finite dimensional eigenspace.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS WITH NONLINEARITY OF ARBITRARY ORDER

  • Tran, Thi Quynh Chi;Le, Thi Thuy;Nguyen, Xuan Tu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.447-463
    • /
    • 2021
  • In this paper we study the existence and long-time behavior of weak solutions to a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators with a new class of nonlinearities. First, we prove the existence and uniqueness of weak solutions by combining the compactness and monotone methods and the weak convergence techniques in Orlicz spaces. Then, we prove the existence of global attractors by using the asymptotic a priori estimates method.

NEGATIVELY BOUNDED SOLUTIONS FOR A PARABOLIC PARTIAL DIFFERENTIAL EQUATION

  • FANG ZHONG BO;KWAK, MIN-KYU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.829-836
    • /
    • 2005
  • In this note, we introduce a new proof of the unique-ness and existence of a negatively bounded solution for a parabolic partial differential equation. The uniqueness in particular implies the finiteness of the Fourier spanning dimension of the global attractor and the existence allows a construction of an inertial manifold.

UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS FOR NON-AUTONOMOUS GENERALIZED 2D PARABOLIC EQUATIONS

  • PARK, JONG YEOUL;PARK, SUN-HYE
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1149-1159
    • /
    • 2015
  • This paper is concerned with a generalized 2D parabolic equation with a nonautonomous perturbation $$-{\Delta}u_t+{\alpha}^2{\Delta}^2u_t+{\mu}{\Delta}^2u+{\bigtriangledown}{\cdot}{\vec{F}}(u)+B(u,u)={\epsilon}g(x,t)$$. Under some proper assumptions on the external force term g, the upper semicontinuity of pullback attractors is proved. More precisely, it is shown that the pullback attractor $\{A_{\epsilon}(t)\}_{t{\epsilon}{\mathbb{R}}}$ of the equation with ${\epsilon}>0$ converges to the global attractor A of the equation with ${\epsilon}=0$.

Domains of Attraction of a Forced Beam with Internal Resonance (내부공진을 가진 보의 흡인영역)

  • 이원경;강명란
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1711-1721
    • /
    • 1992
  • A nonlinear dissipative dynamical system can often have multiple attractors. In this case, it is important to study the global behavior of the system by determining the global domain of attraction of each attractor. In this paper we study the global behavior of a forced beam with two mode interaction. The governing equation of motion is reduced to two second-order nonlinear nonautonomous ordinary differential equations. When .omega. /=3.omega.$_{1}$ and .ohm.=.omega $_{1}$, the system can have two asymptotically stable steady-state periodic solutions, where .omega./ sub 1/, .omega.$_{2}$ and .ohm. denote natural frequencies of the first and second modes and the excitation frequency, respectively. Both solutions have the same period as the excitation period. Therefore each of them shows up as a period-1 solution in Poincare map. We show how interpolated mapping method can be used to determine the two four-dimensional domains of attraction of the two solutions in a very effective way. The results are compared with the ones obtained by direct numerical integration.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

LONG-TIME BEHAVIOR OF A FAMILY OF INCOMPRESSIBLE THREE-DIMENSIONAL LERAY-α-LIKE MODELS

  • Anh, Cung The;Thuy, Le Thi;Tinh, Le Tran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1109-1127
    • /
    • 2021
  • We study the long-term dynamics for a family of incompressible three-dimensional Leray-α-like models that employ the spectral fractional Laplacian operators. This family of equations interpolates between incompressible hyperviscous Navier-Stokes equations and the Leray-α model when varying two nonnegative parameters 𝜃1 and 𝜃2. We prove the existence of a finite-dimensional global attractor for the continuous semigroup associated to these models. We also show that an operator which projects the weak solution of Leray-α-like models into a finite-dimensional space is determining if it annihilates the difference of two "nearby" weak solutions asymptotically, and if it satisfies an approximation inequality.