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ABSTRACT. In this note, we show that the cone property is satisfied for aclass of dissipative
equations of the formut = ∆u+ f(x, u,∇u) in a domainΩ ⊂ R

2 under the so called exact-
ness condition for the nonlinear term. From this, we see thatthe global attractor is represented
as a Lipshitz graph over a finite dimensional eigenspace.

1. INTRODUCTION

An inertial manifold is a positively invariant finite dimensional Lipshitz manifold which
attracts all solutions with an exponential rate. Thus, it contains a global attractor and the
existence of an inertial manifold can explain the long time behavior of the solutions of evolu-
tionary equations. Moreover, it allows for the reduction ofthe dynamics to a finite dimensional
ordinary differential equation, which is called an inertial form. Inertial manifolds have been
constructed for a wide class of partial differential equations. We refer to [2] and [5] for a more
detailed exposition of this theory. However, the theory stands incomplete since there are im-
portant equations, including the Navier-Stokes equation,for which the inertial manifolds are
not known to exist. The main reason for this is the failure of the spectral gap condition for the
eigenvalues of the leading partial differential operator.

In this note, we give a new observation that leads to the existence of an inertial manifold for
a class of equations of the form

ut = ∆u+ f(x, u,∇u), x ∈ Ω ⊂ R
2 (1.1)

with the Dirichlet boundary condition

u|∂Ω = 0.

Here,u = u(t, x) is a scalar function andΩ is a rectangular domain, for which the spectral
gap condition is satisfied. Until now, it is known that the gapcondition holds only for special
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bounded domains inR2 (see [5]). Furthermore, we impose a so called exactness condition on
the nonlinear term:

f(x1, x2, u, p1, p2)p1x2
= f(x1, x2, u, p1, p2)p2x1

. (1.2)

The condition (1.2) is restrictive, but it allowsf to be a combination of functionsg(x, u),
|∇u|2 and∇φ·∇u for some differentiable functionsg andφ in each variable. In the subsequent
sections, we give the basic notations and the main results.

2. NOTATION AND THE MAIN RESULT

Let the spaceH be a Hilbert space with an inner product< ·, · > and a norm‖ · ‖. Let{λj}
be the eigenvalues of the operatorA = −∆+ boundary condition such that

λ1 < λ2 ≤ . . . ≤ λN < λN+1 . . . ,

and{φj} be the corresponding eigenvectors . Denote byP the orthogonal projection operator
from H to a finite dimensional space spanned by{φ1, φ2, . . . , φN}. If Q = I − P , thenH is
orthogonally decomposed asH = PH ⊕QH. LetA be a global attractor for the solutions of
the equation (1.1). Then we are interested in the question whether the projection operatorP
restricted toA is injective, i.e.,

P : A → PH is injective? (2.1)

Equivalently, if u1(t) = p1(t) + q1(t) and u2(t) = p2(t) + q2(t) are two solutions with
p1(t), p2(t) ∈ PH andq1(t), q2(t) ∈ QH, then the question (2.1) can be rephrased as

p1(0) = p2(0) ⇒ u1(t) = u2(t), for all t? (2.2)

To state the main result, we recall the cone property ([4]). Let

u1(t) = p1(t) + q1(t), u2(t) = p2(t) + q2(t),

ρ(t) = p1(t)− p2(t), σ(t) = q1(t)− q2(t).

The coneCk is defined as a subset ofH by

Ck = {(ρ, σ) ∈ H : ‖σ‖ ≤ k‖ρ‖} (2.3)

for somek > 0. Then the cone property is stated as

(i) If u2(0) ∈ u1(0) + Ck, thenu2(t) ∈ u1(t) +Ck for all t > 0.
(ii) If u2(0) /∈ u1(0)+Ck, then eitheru2(t0) ∈ u1(t0)+Ck for somet0 and remains there

for all t > t0 or u2(t) /∈ u1(t)+Ck and‖u1(t)−u2(t)‖ → 0 exponentially ast → ∞.

It is well-known that the cone property is satisfied for the case of global Lipschitz nonlinearity
under the gap condition (2.6) below. More precisely, we consider the equation

du

dt
= −Au+ F (u), (2.4)

and assume the nonlinear term is global Lipschitz continuous with the constantK:

‖F (u)− F (v)‖ ≤ K‖u− v‖, for all u, v ∈ H. (2.5)
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First, we prove the cone property in an equivalent but concise form.

Proposition 1. Let u1(t) andu2(t) be any two orbits in the global attractor of the equation
(2.4). Under the assumption of the spectral gap condition

λN+1 − λN >
(1 + k)2

k
K, (2.6)

we have‖σ‖ ≤ k‖ρ‖ for all t ∈ R and, therefore, the projectionP is injective.

Remark1. The proof is standard, however we provide a new simpler proofhere.

Proof. Let u1(t) = p1(t) + q1(t) andu2(t) = p2(t) + q2(t). Then, forρ(t) = p1(t) − p2(t)
andσ(t) = q1(t)− q2(t), we have

ρt = −Aρ+ PF (u1)− PF (u2),

σt = −Aσ +QF (u1)−QF (u2).
(2.7)

The standard estimates forρ andσ give

1

2

d

dt
‖ρ‖2 =< ρt, ρ >= −‖A1/2ρ‖2+ < PF (u1)− PF (u2), ρ >

≥ −λN‖ρ‖2 −K(‖ρ‖+ ‖σ‖)‖ρ‖,
(2.8)

and
1

2

d

dt
‖σ‖2 =< σt, σ >= −‖A1/2σ‖2+ < QF (u1)−QF (u2), σ >

≤ −λN+1‖σ‖
2 +K(‖ρ‖+ ‖σ‖)‖σ‖.

(2.9)

From (2.8) and (2.9), it follows that

1

2

d

dt
(‖σ‖2 − k2‖ρ‖2) ≤ −λN+1‖σ‖

2 + λNk2‖ρ‖2 +K(‖ρ‖+ ‖σ‖)‖σ‖

+k2K(‖ρ‖+ ‖σ‖)‖ρ‖.
(2.10)

On the boundary of the cone‖σ‖ = k‖ρ‖, we find that

1

2

d

dt
(‖σ‖2 − k2‖ρ‖2) ≤ −(λN+1 − λN )k2‖ρ‖2 + k(1 + k)2K‖ρ‖2 < 0, (2.11)

under the condition

λN+1 − λN >
(1 + k)2

k
K. (2.12)

This implies, onceu1(t) − u2(t) is in Ck, it will never leave it through the boundary‖σ‖ =
k‖ρ‖ and stays in the cone for all time.

Furthermore, if two orbits sit outside of the cone for some timet0, then they must stay there
for all t ≤ t0. That is, if(‖σ‖2 − k2‖ρ‖2)(t0) > 0 for somet0 ∈ R, then

(‖σ‖2 − k2‖ρ‖2)(t) > 0



84 FIRST AND SECOND

for all t ≤ t0. From (2.9),
1

2

d

dt
‖σ‖2 ≤ −λN+1‖σ‖

2 + (1 +
1

k
)K‖σ‖2 = −aN‖σ‖2, (2.13)

with

aN = λN+1 −
k + 1

k
K > 0.

The inequality (2.13) gives

d

dt
(e2aN t‖σ‖2) ≤ 0 (2.14)

or

e2aN t0‖σ(t0)‖
2 ≤ e2aN t‖σ(t)‖2, for all t ≤ t0. (2.15)

Since any orbit in the global attractor is bounded for all time, taking t → −∞, we get
‖σ(t0)‖

2 = 0, which is a contradiction. Thus, we conclude that

‖σ‖2 ≤ k2‖ρ‖2, for all t ∈ R. (2.16)

�

Now, we state the main results of this note.

Theorem 1. Letu1(t) andu2(t) satisfy the cone property:

‖σ‖ ≤ k‖ρ‖, for all t ∈ R (2.17)

with v = u1 − u2 = ρ+ σ. Let us consider a nonlinear change of variable given by

V (x, t) = v(x, t)e−γ(x,t). (2.18)

If γ = γ(x, t) is any bounded smooth function forx ∈ Ω andt ∈ R, thenV (x, t) also satisfies
the cone property with a different constant.

Remark2. The change of variable (2.18) was first used for one dimensional dissipative equa-
tions from a different point of view in [3].

Proof. Denoteρ̃ = PV andσ̃ = QV . Recallingv = V eγ , we obtain

‖ρ‖‖ρ̃‖ ≥< ρ, ρ̃ >=< ρ,PV >=< ρ,Pve−γ >=< ρ, (ρ+ σ)e−γ >

=

∫

Ω

ρ2e−γdx+

∫

Ω

ρσe−γdx ≥ m‖ρ‖2 −M‖ρ‖‖σ‖,
(2.19)

wherem = min e−|γ(x,t)| andM = max e|γ(x,t)|.
Thus

‖ρ‖ ≤
1

m
‖ρ̃‖+

M

m
‖σ‖ (2.20)

and then from (2.17), we have

‖σ‖ ≤ k‖ρ‖ ≤
k

m
‖ρ̃‖+

kM

m
‖σ‖. (2.21)
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Without loss of generality, we may assumekM
m

≤ 1
2

and then (2.21) becomes

1

2
‖σ‖ ≤

k

m
‖ρ̃‖. (2.22)

Similarly, we have

‖σ‖‖σ̃‖ ≥< σ, σ̃ >=< QV eγ , σ̃ >=< σ̃, (ρ̃+ σ̃)eγ >

≥ m‖σ̃‖2 −M‖ρ̃‖‖σ̃‖
(2.23)

and

‖σ‖ ≥ m‖σ̃‖ −M‖ρ̃‖. (2.24)

Finally, combining (2.22) and (2.24), it yields

m‖σ̃‖ −M‖ρ̃‖ ≤ ‖σ‖ ≤
2k

m
‖ρ̃‖, (2.25)

thus, we get

‖σ̃‖ ≤
mM + 2k

m2
‖ρ̃‖, (2.26)

which completes the proof. �

As an application of the Theorem 1, let us consider the equation (1.1) with the condition
(1.2). Letv = u1 − u2. Then, from (1.1), we can write

vt = ∆v + α1(x, t)vx1
+ α2(x, t)vx2

+ β(x, t)v, (2.27)

with

αi(x, t) =

∫

1

0

∂f

∂pi
(x, u2 + τ(u1 − u2),∇u2 + τ(∇u1 −∇u2))dτ, (2.28)

for i = 1, 2, and

β(x, t) =

∫ 1

0

∂f

∂z
(x, u2 + τ(u1 − u2),∇u2 + τ(∇u1 −∇u2))dτ. (2.29)

Now the nonlinear change of variableV (x, t) = v(x, t)e−γ(x,t) in (2.28) yields

Vt = ∆V +

2
∑

i=1

(2γxi
+ αi)Vxi

+ (∆γ + |∇γ|2 +

2
∑

i=1

αiγxi
+ β − γt)V. (2.30)

We see that the exactness condition

f(x1, x2, u, p1, p2)p1x2
= f(x1, x2, u, p1, p2)p2x1

implies that the system

2γx1
+ α1 = 0

2γx2
+ α2 = 0

(2.31)



86 FIRST AND SECOND

can be solved forγ. Then the new equation becomes

Vt = ∆V + η(x, t)V, (2.32)

where

η(x, t) = ∆γ + |∇γ|2 − 2

2
∑

i=1

γ2xi
+ β − γt

andη(x, t) and its derivatives are bounded functions. Now we apply the Proposition 1 to the
equation (2.32) and obtain the cone property under the spectral gap condition (2.6). Finally,
the Theorem 1 gives the cone property for the equation (1.1).This implies the global attractor
is indeed Lipschitz manifold with a finite dimension.

Since the cone condition (2.26) is satisfied, we can construct an N -dimensional inertial
manifold for (2.32) considering the negatively bounded solutions in [1].

Moreover, noting that

Vxi
= vxi

e−γ − ve−γγxi
= vxi

e−γ − γxi
V (2.33)

(2.30) is rewritten as

Vt = ∆V +

2
∑

i=1

(2γxi
+ αi)vxi

e−γ + (∆γ + |∇γ|2 −

2
∑

i=1

γ2xi
+ β − γt)V. (2.34)

If we can solve the following linear first order partial differential equation forz = γ(x, y, t)
on a rectangular domain:

2vx1
γx1

+ 2vx2
γx2

= −vx1
α1 − vx2

α2, (2.35)

then we obtain a similar equation in the form (2.32).
The coefficients in (2.35) are smooth in every variablesx1, x2 andt. Thus, we may write

(2.35) in the form

a(x, y, t)ux + b(x, y, t)uy = c(x, y, t). (2.36)

We look for a bounded smooth solutionz = u(x, y, t) at leastC2 in a space variable andC1 in
a time variable. The standard method is solving the characteristic system (a gradient flow):

dx

ds
= a(x(s), y(s), t(s)),

dy

ds
= b(x(s), y(s), t(s)),

dt

ds
= 0

(2.37)

and integrating along the characteristic:

du(s)

ds
= c(x(s), y(s), t(s)). (2.38)
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However, the geometry of the flow is unclear at this moment andit will be investigated in future
works.
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