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ABSTRACT. In this note, we show that the cone property is satisfied fdass of dissipative
equations of the forny; = Au + f(z,u, Vu) in a domainQ c R? under the so called exact-
ness condition for the nonlinear term. From this, we seettiegaglobal attractor is represented
as a Lipshitz graph over a finite dimensional eigenspace.

1. INTRODUCTION

An inertial manifold is a positively invariant finite dimapgal Lipshitz manifold which
attracts all solutions with an exponential rate. Thus, iitams a global attractor and the
existence of an inertial manifold can explain the long tineddwvior of the solutions of evolu-
tionary equations. Moreover, it allows for the reductiontted dynamics to a finite dimensional
ordinary differential equation, which is called an indrfiarm. Inertial manifolds have been
constructed for a wide class of partial differential eqoiagi We refer to [2] and [5] for a more
detailed exposition of this theory. However, the theoryw@taincomplete since there are im-
portant equations, including the Navier-Stokes equationyhich the inertial manifolds are
not known to exist. The main reason for this is the failurehaf $pectral gap condition for the
eigenvalues of the leading partial differential operator.

In this note, we give a new observation that leads to theengst of an inertial manifold for
a class of equations of the form

ug = Au+ f(x,u, Vu), z € Q C R? (1.1
with the Dirichlet boundary condition
u‘aQ =0.

Here,u = u(t,z) is a scalar function anf is a rectangular domain, for which the spectral
gap condition is satisfied. Until now, it is known that the gamdition holds only for special
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82 FIRST AND SECOND

bounded domains iR? (see [5]). Furthermore, we impose a so called exactnessticondn
the nonlinear term:
f(xb x2, u7p17p2)p112 = f(xla T2, u7p17p2)p211' (12)

The condition (1.2) is restrictive, but it allowsto be a combination of functiong(z, u),
|Vu|? andV¢-Vu for some differentiable functiongande in each variable. In the subsequent
sections, we give the basic notations and the main results.

2. NOTATION AND THE MAIN RESULT

Let the spacéd? be a Hilbert space with an inner product., - > and a norrj| - ||. Let{);}
be the eigenvalues of the operatb= —A + boundary condition such that
AM <A< SAN<ANHL -
and{¢;} be the corresponding eigenvectors . Denoté’tihe orthogonal projection operator
from H to a finite dimensional space spanned{By, ¢s,...,én}. If Q = I — P, thenH is
orthogonally decomposed 26 = PH & QH. Let A be a global attractor for the solutions of
the equation (1.1). Then we are interested in the questiatheh the projection operatd?
restricted taA is injective, i.e.,
P: A — PH is injective? (2.2)
Equivalently, ifui(t) = pi(t) + ¢i(t) andua(t) = pa(t) + g2(t) are two solutions with
pi1(t),p2(t) € PH andqi(t), ¢2(t) € QH, then the question (2.1) can be rephrased as
p1(0) = p2(0) = uy(t) = uo(t), for all t? (2.2)
To state the main result, we recall the cone property ([4é). L
ur(t) = p1(t) + q1(t), u2(t) = p2(t) + q2(t),
p(t) = p1(t) — pa(t), o(t) = q1(t) — qa(t).
The coneC; is defined as a subset &f by
Cr ={(p,0) € H: |lo|| < Kllpl[} (2.3)
for somek > 0. Then the cone property is stated as
(i) If uz(0) € u1(0) + Ck, thenusy(t) € ui(t) + Cy for all ¢ > 0.
(ii) If u2(0) ¢ u1(0)+ Cy, then eithets(to) € ui(to) + Cy, for somety and remains there
forall t > tgorus(t) ¢ ui(t)+ Cr and||ui (t) —ua(t)|| — 0 exponentially ag — co.
It is well-known that the cone property is satisfied for theecaf global Lipschitz nonlinearity
under the gap condition (2.6) below. More precisely, we w®rshe equation
du

= = —Aut Flu), (2.4)

and assume the nonlinear term is global Lipschitz contiswgith the constank’:

|F(u) — F(v)| < Kljlu—wv||, forallu,v € H. (2.5)
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First, we prove the cone property in an equivalent but cenfcsm.

Proposition 1. Letw;(t) anduz(t) be any two orbits in the global attractor of the equation

(2.4). Under the assumption of the spectral gap condition

(1+k)?
k

we have|o| < k||p|| for all ¢ € R and, therefore, the projectioR is injective.

AN+1 — AN > K, (2.6)

Remarkl. The proof is standard, however we provide a new simpler pnecs.

Proof. Let ui(t) = p1(t) + ¢1(t) andua(t) = p2(t) + g2(t). Then, forp(t) = p1(t) — pa2(t)
ando(t) = q1(t) — q2(t), we have

pt = —Ap+ PF(uy) — PF(u2),

01 = Ao + QF(u1) — QF (). @D
The standard estimates fplando give
5l =< prp>= <AV < PRGu) = PP)p> o
> =Anllpl? = K (lloll + llolDllell,
and
LAy P =< o100 5= —|AV20 |+ < QF (1) — QF (us), 0 >
2 dt b ! 20 (2.9)

< —Anillol® + Kol + llo Do |-
From (2.8) and (2.9), it follows that

ld 2 20| 112 2 20| 1112
= —k < =X ANk K
5 g Il 1I7) < =Ansallol]” + AnEZ[pll” + K ([lpll + [lolDlo |l (2.10)

+E2K ([loll + llol)lol-
On the boundary of the coner|| = k||p||, we find that
1d

55(\\0\\2 — K [ol*) < =(Anvs1 = AN)E[pl? + k(1 + k)2K|p]* < 0, (2.11)
under the condition
1+ k)2
At — Ay > +1<; k. 2.12)

This implies, onceu; (t) — us(t) is in C, it will never leave it through the boundafy || =
k||p|| and stays in the cone for all time.

Furthermore, if two orbits sit outside of the cone for someetiy, then they must stay there
forallt < ty. Thatis, if(||o||? — k%||p||*)(to) > 0 for somet, € R, then

(loll* = &2[lp1*)(2) > 0
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forall ¢ < tq. From (2.9),

1d 2 2 1 2 2
el < _ il E—— 2.13
S Zlol? < —Avallol? + (1 + DKo = —ao? (2.13)
with L1

aN:)\N-i-l — %K>O.

The inequality (2.13) gives

d
E(€2aNtHO,H2) <0 (214)
or
N o (tg)|2 < 2N o ()], for all ¢ < to. (2.15)

Since any orbit in the global attractor is bounded for allgjnakingt — —oo, we get
lo(to)||> = 0, which is a contradiction. Thus, we conclude that

|o||? < k?||p||?, forallt € R. (2.16)
]
Now, we state the main results of this note.
Theorem 1. Letu,(t) andus(t) satisfy the cone property:
lo|| < K|p|l, forall t € R (2.17)
withv = u; — ugo = p + 0. Let us consider a nonlinear change of variable given by
V(z,t) = v(x,t)e 7@, (2.18)

If v = ~(x,t) is any bounded smooth function ferc 2 andt € R, thenV (z, t) also satisfies
the cone property with a different constant.

Remark2. The change of variable (2.18) was first used for one dimensidissipative equa-
tions from a different point of view in [3].

Proof. Denotep = PV andg = QV. Recallingv = Ve7, we obtain
[olllloll =< p,p >=< p, PV >=< p,Pve™" >=<p,(p+o)e " >

2 . ) (2.19)
= [ et [ poeda = mlpl? - Mipllal,
wherem = min e~ "@) and M = max /(@b
Thus
1. M
loll < 170 + o] (2:20)

and then from (2.17), we have

k.. kM
loll < kol < 171+ = o]]. 2.21)
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Without loss of generality, we may assurﬁﬁé < % and then (2.21) becomes

ol < <71
g N7l = 7 Pl
Similarly, we have
lollllo]l >< 0,0 >=< QVe',0 >=<0,(p+0)e’ >
>mla||* — M|pll|5|l
and
o]l = mlla]l — M{|p]-
Finally, combining (2.22) and (2.24), it yields
- - 2k -
m|ja| — Mlp|| < [lo] < —pll,
m

thus, we get

~ mM + 2k
17 < ™= 27,

which completes the proof.
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(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
O

As an application of the Theorem 1, let us consider the egudfi.1) with the condition

(1.2). Letv = uy — us. Then, from (1.1), we can write
vy = Av + ay(x, t)vy, + ao(x, t)vg, + Bz, t)v,
with

1
ai(z,t) = / g]‘j (x,ug + 7(u1 — uz2), Vug + 7(Vuy — Vug))dr,
0 i

fori=1,2, and
1 8f
Blx,t) = %(1’,”2 + 7(u; — ug), Vug + 7(Vuy — Vug))dr.
0

Now the nonlinear change of variadlg(z, t) = v(z, t)e~7®? in (2.28) yields

2 2
Vi=AV+ Y (29, +ai)Va, + (Ay+ VAP + D ire, + 8 — 1)V
i=1 i=1
We see that the exactness condition
f(@1, 2,1, p1,P2)pras = f(@1, 2,8, D1, P2) poa

implies that the system

29, + o1 =0

29z, + a2 =0

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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can be solved fof,. Then the new equation becomes
Vi = AV 4+ n(z, t)V, (2.32)

where

2
(@, t) = Ay + VAP =2 72 + 8-
i=1

andn(z,t) and its derivatives are bounded functions. Now we apply tiopdsition 1 to the
equation (2.32) and obtain the cone property under the rgpayap condition (2.6). Finally,
the Theorem 1 gives the cone property for the equation (THik implies the global attractor
is indeed Lipschitz manifold with a finite dimension.

Since the cone condition (2.26) is satisfied, we can consandV-dimensional inertial
manifold for (2.32) considering the negatively boundedigohs in [1].

Moreover, noting that

Vo, = Vg7 —ve Ty, = vge” T — v,V (2.33)

(2.30) is rewritten as
2 2

Vi=AV A+ (27, +aivee T+ (Ay+ VAP =) 2 + 8-V, (2.34)
i=1 =1

If we can solve the following linear first order partial difémtial equation for = ~(x, y, t)
on a rectangular domain:

2U901'7901 + 2U962'7902 = Uz, ] — Vg2, (235)

then we obtain a similar equation in the form (2.32).
The coefficients in (2.35) are smooth in every variablesr, andt¢. Thus, we may write
(2.35) in the form

a(z,y, t)uy +b(x,y, t)uy = c(x,y,t). (2.36)

We look for a bounded smooth solutien= u(z, y,t) at leastC? in a space variable ar@' in
a time variable. The standard method is solving the chaiatitesystem (a gradient flow):

d
— = alx(s), y(s),4(s)),
dy
L CORIORION (2.37)
dt
% — 0
and integrating along the characteristic:
) _ ofas), y(s), 1(s)). (2.39)

ds
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However, the geometry of the flow is unclear at this momentianil be investigated in future
works.
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