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GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR

DEGENERATE PARABOLIC EQUATIONS WITH

NONLINEARITY OF ARBITRARY ORDER

Tran Thi Quynh Chi, Le Thi Thuy, and Nguyen Xuan Tu

Abstract. In this paper we study the existence and long-time behavior
of weak solutions to a class of quasilinear degenerate parabolic equations

involving weighted p-Laplacian operators with a new class of nonlinear-

ities. First, we prove the existence and uniqueness of weak solutions by
combining the compactness and monotone methods and the weak conver-

gence techniques in Orlicz spaces. Then, we prove the existence of global
attractors by using the asymptotic a priori estimates method.

1. Introduction

The understanding of the asymptotic behavior of dynamical systems is one
of the most important problems of modern mathematical physics. One way
to treat this problem for a system having some dissipativity properties is to
analyze the existence and structure of its global attractor. The existence of
the global attractor has been derived for a large class of nondegenerate PDEs
(see e.g. [5,21] and references therein). In recent years, the existence and long-
time behavior of solutions to degenerate parabolic equations have attracted the
attention of many mathematicians.

In this paper we consider the following problem

(1.1)


ut − div(a(x)|∇u|p−2∇u) + f(u) = g(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω,
2 ≤ p ≤ N , u0 ∈ L2(Ω) given, the coefficient a(·), the nonlinearity f and the
external force g satisfy the following conditions:
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(H1) The function a : Ω→ R satisfies the following assumptions: a ∈ L1
loc(Ω)

and a(x) = 0 for x ∈ Σ, and a(x) > 0 for x ∈ Ω\Σ, where Σ is a closed
subset of Ω with meas(Σ) = 0. Furthermore, we assume that∫

Ω

1

[a(x)]
N
α

dx <∞ for some α ∈ (0, p);

(H2) f : R→ R is a continuously differentiable function satisfying

f(u)u ≥ −µu2 − c1,(1.2)

f ′(u) ≥ −`,(1.3)

where c1, `, µ are positive constants, and if p = 2, then we assume
furthermore that 0 < µ < c0 with c0 is determined in (2.1).

(H3) g ∈ L2(Ω).

The degeneracy of problem (1.1) is considered in the sense that the mea-
surable, nonnegative diffusion coefficient a(x) is allowed to vanish somewhere.
The physical motivation of the assumption (H1) is related to the modeling of
reaction diffusion processes in composite materials, occupying a bounded do-
main Ω, in which at some points they behave as perfect insulator. Following
[7, p. 79], when at some points the medium is perfectly insulating, it is natural
to assume that a(x) vanishes at these points. As mentioned in [13,18], the as-
sumption (H1) implies that the degenerate set may consist of an infinite many
number of points, which is different from the weight of Caldiroli-Musina type
in [3, 4, 6] that is only allowed to have at most a finite number of zeroes. A
typical example of the weight a(·) is dist(x, ∂Ω).

Problem (1.1) contains some important classes of parabolic equations, such
as the semilinear heat equation (when a = 1, p = 2), semilinear degenerate
parabolic equations (when p = 2), the p-Laplacian equations (when a = 1, p 6=
2), etc. It is noticed that the existence and long-time behavior of weak solutions
to problem (1.1) in a particular case, namely when p = 2 and the nonlinearity is
growth and dissipative of polynomial type, were studied by Li, Ma and Zhong
in [13]. For this kind of nonlinearities, the existence of entropy solutions and the
existence of a global attractor in L1(Ω) of this problem have been studied very
recently in [18]. We also refer the interested reader to [1–4, 9–12, 14, 15, 17, 20]
for related results on degenerate parabolic equations.

To study problem (1.1) we first introduce the energy space W 1,p
0 (Ω, a) de-

fined as the closure of C∞0 (Ω) in the norm

‖u‖W 1,p
0 (Ω,a) :=

(∫
Ω

a(x)|∇u|pdx
)1/p

,

and prove some compact embedding results related to this space (see Section
2 for details). Then, under assumptions (H1)-(H3), we prove the existence of
global weak solutions and the existence of global attractors for the semigroup
generated by problem (1.1) in L2(Ω) and W 1,p

0 (Ω, a). Thus, in some sense, we
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improve previous results about the p-Laplacian parabolic equations in bounded
domains.

Let us explain the methods used in the paper. First, using the compactness
and monotonicity methods [16, Chapters 1-2] and weak convergence techniques
in Orlicz spaces [9] we prove the existence and uniqueness of a global weak so-
lution to problem (1.1). Then we study the existence of global attractors in
some function spaces for the semigroup associated to problem (1.1). Thanks

to a priori estimates of the solutions in W 1,p
0 (Ω, a) and D(Lp,a) and the com-

pactness of the embeddings W 1,p
0 (Ω, a) ↪→ L2(Ω) and D(Lp,a) ↪→ W 1,p

0 (Ω, a),

we get the existence of a global attractor in L2(Ω) and W 1,p
0 (Ω, a).

The rest of the paper is organized as follows. In Section 2, we introduce some
function spaces and prove some compactness results, which are frequently used
later. Section 3 is devoted to the proof of global existence of a weak solution
to problem (1.1) by using compactness and monotonicity methods and weak
convergence techniques in Orlicz spaces. In Section 4, we prove the existence
of global attractors in L2(Ω) and W 1,p

0 (Ω, a) for the semigroup associated to
problem (1.1).

2. Preliminaries

To study problem (1.1), we introduce the weighted Sobolev space W 1,p
0 (Ω, a),

defined as the closure of C∞0 (Ω) in the norm

‖u‖W 1,p
0 (Ω,a) :=

(∫
Ω

a(x)|∇u|pdx
) 1
p

,

and denote by W−1,q(Ω, a) its dual space, with 1
p + 1

q = 1.

It is noticed that the assumption (H1) has been particularly made in [18],
where the authors use the following expression∫

Ω

[a(x)]−(1/γ)dx <∞ for some γ ∈ (0, p− 1),

which gives (H1) by taking γ = α/N . Therefore, from the corresponding
results in [18], we have the following embeddings, which are generalizations of
the corresponding results in the case p = 2 of Li et al. [13].

Proposition 2.1. Assume that Ω is a bounded domain in RN (N ≥ 2) and a(·)
satisfies (H1). Then the following embeddings hold:

(i) W 1,p
0 (Ω, a) ↪→W 1,β

0 (Ω) continuously if 1 ≤ β ≤ pN
N+α ;

(ii) W 1,p
0 (Ω, a) ↪→ Lr(Ω) continuously if 1 ≤ r ≤ p∗α, where p∗α = pN

N−p+α ;

(iii) W 1,p
0 (Ω, a) ↪→ Lr(Ω) compactly if 1 ≤ r < p∗α.

Thanks to Proposition 2.1, there exists a best constant c0 such that

c0‖u‖2L2(Ω) ≤ ‖u‖
2
W 1,p

0 (Ω,a)
.(2.1)
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Putting
Lp,au = −div(a(x)|∇u|p−2∇u), u ∈W 1,p

0 (Ω, a).

The following proposition, its proof is straightforward, gives some important
properties of the operator Lp,a.

Proposition 2.2. The operator Lp,a maps W 1,p
0 (Ω, a) into its dual W−1,q(Ω, a).

Moreover,

(i) Lp,a is hemicontinuous, i.e., for all u, v, w ∈ W 1,p
0 (Ω, a), the map λ 7→

〈Lp,a(u+ λv), w〉 is continuous from R to R;
(ii) Lp,a is strongly monotone when p ≥ 2, i.e.,

〈Lp,au− Lp,av, u− v〉 ≥ δ‖u− v‖pW 1,p
0 (Ω,a)

for all u, v ∈W 1,p
0 (Ω, a).

We introduce the Banach space D(Lp,a), defined as the domain of the oper-
ator Lp,a with the homogeneous Dirichlet boundary condition

D(Lp,a) := {u ∈W 1,p
0 (Ω, a) |Lp,au ∈ L2(Ω)},

endowed with the norm

‖u‖D(Lp,a) :=
(∫

Ω

|div(a(x)|∇u|p−2∇u)|2dx
) 1

2(p−1)

.

Proposition 2.3. Assume that Ω is bounded domain in RN (N ≥ 2) and a(·)
satisfies (H1). Then the embedding D(Lp,a) ↪→W 1,p

0 (Ω, a) is compact.

Proof. For any function u ∈ D(Lp,a), we have

‖u‖p
W 1,p

0 (Ω,a)
=

∫
Ω

a(x)|∇u|pdx

= −
∫

Ω

div(a(x)|∇u|p−2∇u)udx

≤
(∫

Ω

|div(a(x)|∇u|p−2∇u)|2dx
)1/2(∫

Ω

|u|2dx
)1/2

≤ ‖u‖p−1
D(Lp,a) · ‖u‖L2(Ω).(2.2)

Noting that ‖u‖L2(Ω) ≤ C‖u‖W 1,p
0 (Ω,a) by Proposition 2.1. From (2.2), we

obtain
‖u‖p−1

W 1,p
0 (Ω,a)

≤ C‖u‖p−1
D(Lp,a).

It implies that D(Lp,a) ↪→W 1,p
0 (Ω, a). Next, we will prove that for any ε > 0,

there exists a constant C(ε) such that

(2.3) ‖u‖p
W 1,p

0 (Ω,a)
≤ ε‖u‖pD(Lp,a) + C(ε)‖u‖pL1(Ω)

for all u ∈ D(Lp,a). Indeed, since W 1,p
0 (Ω, a) ↪→↪→ L2(Ω) ↪→ L1(Ω), by the

Ehrling lemma (see [19, p. 215]), we have for any η > 0, there exists a constant
C(η) such that

‖u‖L2(Ω) ≤ η‖u‖W 1,p
0 (Ω,a) + C(η)‖u‖L1(Ω).
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Combining this inequality into (2.2) and using the Cauchy inequality, we obtain

‖u‖p
W 1,p

0 (Ω,a)
≤ ‖u‖p−1

D(Lp,a)(η‖u‖W 1,p
0 (Ω,a) + C(η)‖u‖L1(Ω))

≤ C1(η, p)‖u‖p
W 1,p

0 (Ω,a)
+ C2(η, p)‖u‖pD(Lp,a) + C3(η, p)‖u‖pL1(Ω).

Hence, we obtain (2.3) for suitable choosing of η. Let {un} be a bounded

sequence in D(Lp,a). Since D(Lp,a) ↪→ W 1,p
0 (Ω, a) ↪→↪→ L1(Ω), there exists a

subsequence {unk} such that unk → u in L1(Ω). Using (2.3), we have

‖unk − u‖pW 1,p
0 (Ω,a)

≤ ε‖unk − u‖pD(Lp,a) + C(ε)‖unk − u‖pL1(Ω).

By the boundedness of this subsequence in D(Lp,a), we conclude that unk → u

in W 1,p
0 (Ω, a), up to a subsequence if necessary. This completes the proof. �

Proposition 2.4. Let {un} be a bounded sequence in Lp(0, T ;W 1,p
0 (Ω, a)) such

that {u′n} is bounded in Lq(0, T ;W−1,q(Ω, a)) where q = p/(p − 1). If (H1)
holds, then {un} converges almost everywhere in ΩT := Ω × (0, T ) up to a
subsequence.

Proof. By Proposition 2.1, one can take a number r ∈ [2, p∗α) such that

(2.4) W 1,p
0 (Ω, a) ↪→↪→ Lr(Ω).

Since r′ = r/(r − 1) ≤ 2, we have

Lp(Ω) ↪→ Lr
′
(Ω),

and therefore,

(2.5) Lr(Ω) ↪→ Lq(Ω).

Using Proposition 2.1 once again and noticing that p < p∗α since α ∈ (0, p), we
see that

W 1,p
0 (Ω, a) ↪→ Lp(Ω).

This and (2.5) follow that

Lr(Ω) ↪→W−1,q(Ω, a).

Now with (2.4), we have an evolution triple

W 1,p
0 (Ω, a) ↪→↪→ Lr(Ω) ↪→W−1,q(Ω, a).

The assumption of {u′n} in Lq(0, T ;W−1,q(Ω, a)) implies that

{u′n} is also bounded in Lq(0, T ;W−1,q(Ω, a)).

Thanks to the well-known Aubin-Lions compactness lemma (see [16, p. 58]),
{un} is precompact in Lp(0, T ;Lr(Ω)) and therefore in Ls(0, T ;Ls(Ω)), s =
min(p, r), so it has an a.e. convergent subsequence. �
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3. Existence and uniqueness of global weak solutions

Denote ΩT = Ω× (0, T ) and let (p, q) be conjugate, i.e., 1
p + 1

q = 1. We give

the definition of weak solutions to problem (1.1).

Definition. A function u is called a weak solution of problem (1.1) on the
interval (0, T ) if

u ∈ Lp(0, T ;W 1,p
0 (Ω, a)) ∩ C([0, T ];L2(Ω))

du

dt
∈ Lq(0, T ;W−1,q(Ω, a)) + L1(ΩT ),

u|t=0 = u0 a.e. in Ω, f(u) ∈ L1(ΩT ),

and ∫
ΩT

(
∂u

∂t
η + a(x)|∇u|p−2∇u∇η + f(u)η − gη

)
dxdt = 0

for all test functions η ∈ Lp(0, T ;W 1,p
0 (Ω, a) ∩ L∞(Ω)).

Theorem 3.1. Under assumptions (H1)-(H3), for each u0 ∈ L2(Ω) and T > 0
given, the problem (1.1) has a unique weak solution on (0, T ). Moreover, the
mapping u0 7→ u(t) is continuous on L2(Ω).

Proof. (i) Existence. Consider the approximating solution un(t) in the form

un(t) =

n∑
k=1

unk(t)ek,

where {ej}∞j=1 is dense in W 1,p
0 (Ω, a) ∩ L∞(Ω) and orthogonal in L2(Ω). We

get un from solving the problem〈
dun
dt

, ek〉+ 〈Lp,aun, ek〉+ 〈f(un), ek〉 = 〈g, ek〉,
(un(0), ek) = (u0, ek), k = 1, . . . , n.

By the Peano theorem, we obtain the local existence of un. We now establish
some a priori estimates for un. Since

(3.1)
1

2

d

dt
‖un‖2L2(Ω) + ‖un‖pW 1,p

0 (Ω,a)
+

∫
Ω

f(un)undx =

∫
Ω

gundx.

In the case p = 2, it follows from (1.2) and (2.1) that

1

2

d

dt
‖un‖2L2(Ω) + (c0 − µ)‖un‖2L2(Ω) ≤ c1|Ω|+

∫
Ω

gundx.

Since c0 − µ > 0, by the Young inequality, we obtain

(3.2)
d

dt
‖un‖2L2(Ω) + (c0 − µ)‖un‖2L2(Ω) ≤ 2c1|Ω|+

1

c0 − µ
‖g‖2L2(Ω).



A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS 453

In the case p > 2, noting that c2‖u‖pL2(Ω) ≤ ‖u‖
p

W 1,p
0 (Ω,a)

due to Proposition

2.1, from (3.1) and (1.2) we get

1

2

d

dt
‖un‖2L2(Ω) +

1

2
‖un‖2L2(Ω) + c2‖un‖pL2(Ω)

≤ 1

2
‖un‖2L2(Ω) −

∫
Ω

f(un)undx+

∫
Ω

gundx

≤ (µ+ 1)‖un‖2L2(Ω) + c1|Ω|+
1

2
‖g‖2L2(Ω).

Moreover, there exists a positive constant C1 such that

−c2|s|p + (µ+ 1)|s|2 ≤ C1.

Thus,

(3.3)
d

dt
‖un‖2L2(Ω) + ‖un‖2L2(Ω) ≤ 2C1 + 2c1|Ω|+ ‖g‖2L2(Ω).

From (3.2) and (3.3), we have

d

dt
‖un‖2L2(Ω) ≤ C,

where C = C(c0, c1, c2, µ, C1, |Ω|, ‖g‖L2(Ω)). Integrating from 0 to t, 0 ≤ t ≤ T
and using the fact that ‖un(0)‖L2(Ω) ≤ ‖u0‖L2(Ω), we obtain

(3.4) ‖un(t)‖2L2(Ω) ≤ ‖u0‖2L2(Ω) + CT.

On the other hand, from (3.1) and using (1.2), (3.4) we have

1

2

d

dt
‖un‖2L2(Ω) + ‖un‖pW 1,p

0 (Ω,a)
≤ c1|Ω|+

(
µ+

1

2

)
‖un‖2L2(Ω) +

1

2
‖g‖2L2(Ω)

≤ C.

Integrating from 0 to t, 0 ≤ t ≤ T and using the fact that ‖un(0)‖L2(Ω) ≤
‖u0‖L2(Ω), we obtain

‖un(t)‖2L2(Ω) + 2

∫ t

0

‖un‖pW 1,p
0 (Ω,a)

dt ≤ C.

It follows that

• {un} is bounded in L∞(0, T ;L2(Ω));

• {un} is bounded in Lp(0, T ;W 1,p
0 (Ω, a)).

On the other hand, by the Hölder inequality we have∣∣∣ ∫ T

0

〈Lp,aun, v〉dt
∣∣∣ =

∣∣∣ ∫ T

0

∫
Ω

a(x)|∇un|p−2∇un∇vdxdt
∣∣∣

≤
∫ T

0

∫
Ω

(
a(x)

p−1
p |∇un|p−1)(a(x)

1
p |∇v|

)
dxdt

≤ ‖un‖
p
q

Lp(0,T ;W 1,p
0 (Ω,a))

‖v‖Lp(0,T ;W 1,p
0 (Ω,a))
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for any v ∈ Lp(0, T ;W 1,p
0 (Ω, a)).

Using the boundedness of {un} in Lp(0, T ;W 1,p
0 (Ω, a)), we infer that {Lp,aun}

is bounded in Lq(0, T ;W−1,q(Ω, a)).
We now prove that {f(un)} is bounded in L1(ΩT ). It follows from (3.1) and

(3.4) that

1

2

d

dt
‖un‖2L2(Ω) +

∫
Ω

f(un)undx ≤ C.

Integrating from 0 to T , we obtain

1

2
‖un(T )‖2L2(Ω) +

∫
ΩT

f(un)undxdt ≤
1

2
‖un(0)‖2L2(Ω) + TC.

Hence

(3.5)

∫
ΩT

f(un)undxdt ≤
1

2
‖u0‖2L2(Ω) + TC.

Setting h(un) = f(un) − f(0) + νun with ν > `. It follows from (1.2) that
h(s)s ≥ 0 for all s ∈ R. Therefore, we deduce from (3.5) and the boundedness
of {un} in L∞(0, T ;L2(Ω)) that∫

ΩT

|h(un)|dxdt ≤
∫

ΩT∩{|un|>1}
|h(un)un|dxdt+

∫
ΩT∩{|un|≤1}

|h(un)|dxdt

≤
∫

ΩT

h(un)undxdt+ sup
|s|≤1

|h(s)| |ΩT |

=

∫
ΩT

f(un)undxdt+ ν

∫
ΩT

|un|2dxdt+ |f(0)|
∫

ΩT

|un|dxdt

+ sup
|s|≤1

|h(s)| |ΩT |

≤ C.

This means that {h(un)} is bounded in L1(ΩT ), and so is {f(un)}. Rewriting

(1.1) in Lq(0, T ;W−1,q
0 (Ω, a)) + L1(ΩT ) as

(3.6) unt = g − Lp,aun − f(un).

Therefore, by Proposition 2.4, there is an a.e. convergent subsequence in ΩT
and {un} is compact in L2(0, T ;L2(Ω)). Applying a diagonalization procedure
and using Lemma 1.3 in [16, p. 12], we obtain (up to a subsequence) that

un ⇀ u in Lp(0, T ;W 1,p
0 (Ω, a)),

un → u in L2(0, T ;L2(Ω)),

unt ⇀ ut in Lq(0, T ;W−1,q(Ω, a)) + L1(ΩT ),

Lp,aun ⇀ ψ in Lq(0, T ;W−1,q(Ω, a)),

un(T )→ u(T ) in L2(Ω).
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We now pass to the limit in the nonlinear term. From (1.3) we see that h(·) is
a strictly increasing function. Moreover, using (3.5) we have∫

ΩT

h(un(t))un(t)dxdt ≤ 1

2
‖u0‖2L2(Ω) + TC‖g‖2L2(Ω)

+
|f(0)|2

2
|Ω|T +

(1

2
+ ν
)
‖un‖2L2(0,T,L2(Ω)).

Since un → u strongly in L2(0, T ;L2(Ω)), then up to a subsequence, we have
un → u a.e. in ΩT . Applying Lemma 6.1 in [8], we obtain that h(u) ∈ L1(ΩT )

and for all test functions ϕ ∈ C∞0 ([0, T ];W 1,p
0 (Ω, a) ∩ L∞(Ω)),∫

ΩT

h(un)ϕdxdt→
∫

ΩT

h(u)ϕdxdt as n→∞.

Hence, f(u) ∈ L1(ΩT ) and for all ϕ ∈ C∞0 ([0, T ];W 1,p
0 (Ω, a) ∩ L∞(Ω)),∫

ΩT

f(un)ϕdxdt→
∫

ΩT

f(u)ϕdxdt as n→∞.

Now, passing to the limit in (3.6), one has in the distribution sense

(3.7) ut = g − ψ − f(u).

We now show that ψ = Lp,au. To do this, integrating (3.1) from 0 to T we
obtain ∫ T

0

∫
Ω

a(x)|∇un|pdxdt =

∫
ΩT

gundxdt−
∫

ΩT

f(un)undxdt

+
1

2
‖un(0)‖2L2(Ω) −

1

2
‖un(T )‖2L2(Ω).

Since lim
n→∞

‖un(T )‖2L2(Ω) = ‖u(T )‖2L2(Ω) and lim
n→∞

‖un(0)‖2L2(Ω) = ‖u0‖2L2(Ω),

we deduce that

lim
n→∞

∫ T

0

∫
Ω

a(x)|∇un|pdxdt =

∫
ΩT

gudxdt−
∫

ΩT

f(u)udxdt

+
1

2
‖u0‖2L2(Ω) −

1

2
‖u(T )‖2L2(Ω).(3.8)

Using Proposition 2.2, we have∫
ΩT

(
a(x)|∇un|p−2∇un − a(x)|∇v|p−2∇v

)
· ∇(un − v)dxdt ≥ 0

for all v ∈ Lp(0, T ;W 1,p
0 (Ω, a)). Thus, taking the limits leads to

lim
n→∞

∫ T

0

∫
Ω

a(x)|∇un|pdxdt−
∫ T

0

〈ψ, v〉dt

−
∫

ΩT

a(x)|∇v|p−2∇v · ∇(u− v)dxdt ≥ 0.
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Putting this with (3.8), we have∫
ΩT

gudxdt−
∫

ΩT

f(u)udxdt+
1

2
‖u0‖2L2(Ω) −

1

2
‖u(T )‖2L2(Ω)

−
∫ T

0

〈ψ, v〉dt−
∫

ΩT

a(x)|∇v|p−2∇v · ∇(u− v)dxdt ≥ 0.(3.9)

We see that f(u) ∈ L1(ΩT ) and u does not belong to W 1,p
0 (Ω, a) ∩ L∞(Ω).

Therefore, u cannot be chosen as a test function in (3.7). We will use some
ideas in [9]. Let Bk : R→ R be the truncated function defined by

Bk(s) =


k if s > k,

s if |s| ≤ k,
−k if s < −k.

We construct the following Nemytskii mapping

B̂k : W 1,p
0 (Ω, a) ∩ L∞(Ω)→W 1,p

0 (Ω, a) ∩ L∞(Ω)

v 7→ B̂k(v)(x) = Bk(v(x)).

It follows from Lemma 2.3 in [9] that ‖B̂k(v) − v‖W 1,p
0 (Ω,a)∩L∞(Ω) → 0 as

k → ∞. We now can test (3.7) by B̂k(u). Multiplying (3.7) by B̂k(u), then
integrating from ε to T , we have∫ T

ε

∫
Ω

d

dt

(
u(t)B̂k(u)(t)

)
dxdt−

∫ T

ε

∫
Ω

u
d

dt

(
B̂k(u)(t)

)
dxdt+

∫ T

ε

〈ψ, B̂k(u)〉dt

=

∫ T

ε

∫
Ω

gB̂k(u)dxdt−
∫ T

ε

∫
Ω

f(u)B̂k(u)dxdt.

Noting that u d
dt

(
B̂k(u)

)
= 1

2
d
dt

((
B̂k(u)

)2)
, we have∫ T

ε

〈ψ, B̂k(u)〉dt =

∫ T

ε

∫
Ω

gB̂k(u)dxdt−
∫ T

ε

∫
Ω

h(u)B̂k(u)dxdt

−
∫ T

ε

∫
Ω

(f(0)− νu)B̂k(u)dxdt+

∫
Ω

u(ε)B̂k(u)(ε)dx

−
∫

Ω

u(T )B̂k(u)(T )dx

+
1

2
‖B̂k(u)(T )‖2L2(Ω) −

1

2
‖B̂k(u)(ε)‖2L2(Ω).

Passing to the limit as k →∞ we have∫ T

ε

〈ψ, u〉dt =

∫ T

ε

∫
Ω

gudxdt− lim
k→∞

∫ T

ε

∫
Ω

h(u)B̂k(u)dxdt

−
∫ T

ε

∫
Ω

(f(0)− νu)udxdt+
1

2
‖u(ε)‖2L2(Ω) −

1

2
‖u(T )‖2L2(Ω),(3.10)
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where due to the nondecreasing of {h(u)B̂k(u)}∞k=1 and B̂k(u)→ u in C([0, T ];
L2(Ω)), it follows from the monotone convergence theorem that

lim
k→∞

∫ T

ε

∫
Ω

h(u)B̂k(u)dxdt =

∫ T

ε

∫
Ω

h(u)udxdt.

We deduce from (3.10) by passing to the limit as ε→ 0 that

(3.11)

∫ T

0

〈ψ, u〉dt=
∫

ΩT

gudxdt−
∫

ΩT

f(u)udxdt+
1

2
‖u0‖2L2(Ω)−

1

2
‖u(T )‖2L2(Ω).

In view of (3.9) and (3.11), we have∫ T

0

〈ψ + div(a(x)|∇v|p−2∇v), u− v〉dt ≥ 0, ∀v ∈ Lp(0, T ;W 1,p
0 (Ω, a)).

Choosing v = u− δϕ, we deduce that∫ T

0

〈ψ + div(a(x)|∇(u− δϕ)|p−2∇(u− δϕ)), ϕ〉dt ≥ 0, if δ > 0,∫ T

0

〈ψ + div(a(x)|∇(u− δϕ)|p−2∇(u− δϕ)), ϕ〉dt ≤ 0, if δ < 0,

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω, a)). Letting δ → 0, we get∫ T

0

〈ψ + div(a(x)|∇u|p−2∇u), ϕ〉dt = 0, ∀ϕ ∈ Lp(0, T ;W 1,p
0 (Ω, a)).

This implies that ψ = −div
(
a(x)|∇u|p−2∇u

)
in Lq(0, T ;W−1,q(Ω, a)). We

now prove u(0) = u0. Choosing some test function ϕ ∈ C1([0, T ];W 1,p
0 (Ω, a) ∩

L∞(Ω)) with ϕ(T ) = 0 and integrating by parts in t in the approximate equa-
tions, we have∫ T

0

−〈un, ϕ′〉dt+

∫ T

0

〈Lp,aun, ϕ〉dt+

∫
ΩT

(f(un)ϕ− gϕ)dxdt = (un(0), ϕ(0)).

Taking limits as n→∞, we obtain

(3.12)

∫ T

0

−〈u, ϕ′〉dt+

∫ T

0

〈Lp,au, ϕ〉dt+

∫
ΩT

(f(u)ϕ− gϕ)dxdt=(u0, ϕ(0)),

since un(0)→ u0. On the other hand, for the “limiting equation”, we have

(3.13)

∫ T

0

−〈u, ϕ′〉dt+

∫ T

0

〈Lp,au, ϕ〉dt+

∫
ΩT

(f(u)ϕ− gϕ)dxdt=(u(0), ϕ(0)).

Comparing (3.12) and (3.13), we get u(0) = u0, which completes the proof of
existence.

(ii) Uniqueness and continuous dependence. Let u, v be two weak solutions
of problem (1.1) with initial data u0, v0 in L2(Ω), respectively. Then w := u−v
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satisfies

(3.14)


dw

dt
+ (Lp,au− Lp,av) + (f(u)− f(v)) = 0,

w(0) = u0 − v0.

Multiplying the first equation in (3.14) by B̂k(w), then integrating from ε to t,
we obtain

(3.15)

∫ t

ε

∫
Ω

d

ds

(
w(s)B̂k(w)(s)

)
dxds−

∫ t

ε

∫
Ω

w
d

ds
B̂k(w(s))dxds

+

∫ t

ε

∫
Ω

(a(x)|∇u|p−2∇u− a(x)|∇v|p−2∇v)∇(B̂k(w)(s))dxds

+

∫ t

ε

∫
Ω

(f(u)− f(v))B̂k(w)(s)dxds = 0.

Since w d
dt

(
B̂k(w)

)
= 1

2
d
dt

(
(B̂k(w))2

)
, we introduce from Proposition 2.2 and

(1.3) by passing (3.15) to the limit as k →∞ and ε→ 0 that

‖w‖2L2(Ω) ≤ ‖w(0)‖2L2(Ω) + 2`

∫ t

0

‖w(s)‖2L2(Ω)ds.

Applying the Gronwall inequality, we obtain

‖w(t)‖2L2(Ω) ≤ ‖w(0)‖2L2(Ω)e
2`t for all t ∈ [0, T ].

This completes the proof. �

4. Existence of global attractors

By Theorem 3.1, we can define a continuous nonlinear semigroup

S(t) : L2(Ω)→ L2(Ω), u0 7→ S(t)u0 := u(t),

where u(t) is the unique weak solution to problem (1.1) with initial datum u0.
The aim of this section is to prove the existence of global attractors in various
spaces for the semigroup S(t).

For the sake of brevity, in the following lemmas we give some formal cal-
culations, the rigorous proof is done by use of Galerkin approximations and
Lemma 11.2 in [19].

Lemma 4.1. The semigroup {S(t)}t≥0 has a bounded absorbing set in L2(Ω).

Proof. Multiplying (1.1) by u and integrating by parts, we have

(4.1)
1

2

d

dt
‖u‖2L2(Ω) + ‖u‖p

W 1,p
0 (Ω,a)

+

∫
Ω

f(u)udx =

∫
Ω

gudx.

In the case p = 2, analogously to (3.2) we have

d

dt
‖u‖2L2(Ω) + (c0 − µ)‖u‖2L2(Ω) ≤ 2c1|Ω|+

1

c0 − µ
‖g‖2L2(Ω).
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Applying the Gronwall lemma, we get

(4.2) ‖u(t)‖2L2(Ω) ≤ ‖u0‖2L2(Ω)e
−(c0−µ)t + C(‖g‖L2(Ω), |Ω|, µ, c0, c1).

In the case p > 2, analogously to (3.3) we have

d

dt
‖u‖2L2(Ω) + ‖u‖2L2(Ω) ≤ 2C1 + 2c1|Ω|+ ‖g‖2L2(Ω).

Applying the Gronwall lemma, we get

(4.3) ‖u(t)‖2L2(Ω) ≤ ‖u0‖2L2(Ω)e
−t + C(‖g‖L2(Ω), |Ω|, C1, c1).

From (4.2) and (4.3), we see that {S(t)}t≥0 has a bounded absorbing set in
L2(Ω), i.e., there is a positive constant ρ0 such that for any bounded subset B
in L2(Ω), there exists T1 = T1(B) which depends only on the L2-norm of B
such that

(4.4) ‖S(t)u0‖2L2(Ω) ≤ ρ0 for all t ≥ T1, u0 ∈ B.

This completes the proof. �

Lemma 4.2. The semigroup {S(t)}t≥0 has a bounded absorbing set in

W 1,p
0 (Ω, a).

Proof. Multiplying the first equation in (1.1) by Lp,au and integrating by parts,
we obtain

1

p

d

dt
‖u‖p

W 1,p
0 (Ω,a)

+ ‖Lp,au‖2L2(Ω) = −
∫

Ω

f ′(u)a(x)|∇u|pdx+

∫
Ω

gLp,audx.

Using (H1), (1.3) and the Cauchy inequality, we deduce that

(4.5)
d

dt
‖u‖p

W 1,p
0 (Ω,a)

≤ `p‖u‖p
W 1,p

0 (Ω,a)
+ C‖g‖2L2(Ω).

On the other hand, integrating (4.1) from t to t + 1 and using (1.2) together
with the Cauchy inequality, we have

1

2
‖u(t+ 1)‖2L2(Ω) +

∫ t+1

t

‖u(s)‖p
W 1,p

0 (Ω,a)
ds

≤
(
µ+

1

2

)∫ t+1

t

‖u(s)‖2L2(Ω)ds+
1

2
‖u(t)‖2L2(Ω) + c1|Ω|+

1

2
‖g‖2L2(Ω).

In view of (4.4), we get the following estimate

(4.6)

∫ t+1

t

‖u(s)‖p
W 1,p

0 (Ω,a)
ds ≤

(
(µ+

1

2
)ρ0 + c1|Ω|+

1

2
‖g‖2L2(Ω)

)
for all t ≥ T0. As an application of the uniform Gronwall inequality, we deduce
from (4.5) and (4.6) that

(4.7) ‖u(t)‖p
W 1,p

0 (Ω,a)
≤ ρ1

for all t ≥ T1 = T0 + 1. �
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From Lemma 4.1 and the compactness of the embedding W 1,p
0 (Ω, a) ↪→

L2(Ω), we immediately obtain the following result.

Theorem 4.3. Assume that assumptions (H1)-(H3) are satisfied. Then the
semigroup {S(t)}t≥0 associated to (1.1) has a global attractor AL2 in L2(Ω).

Lemma 4.4. Assume that assumptions (H1)-(H3) hold. Then there exists a
bounded absorbing set for semigroup {S(t)}t≥0 in D(Lp,a).

Proof. By differentiating (1.1) in time and denoting v = ut, we get

vt− div
(
a(x)|∇u|p−2∇v

)
− (p− 2)div

(
a(x)|∇u|p−4(∇u · ∇v)∇u

)
+ f ′(u)v = 0.

Multiplying the above equality by v, integrating over Ω and using (1.3), we
obtain

1

2

d

dt
‖v‖2L2(Ω) +

∫
Ω

a(x)|∇u|p−2|∇v|2 + (p− 2)

∫
Ω

a(x)|∇u|p−4(∇u · ∇v)2

≤ `‖v‖2L2(Ω),

and hence,

(4.8)
d

dt
‖v‖2L2(Ω) ≤ 2`‖v‖2L2(Ω).

On the other hand, multiplying the first equation in (1.1) by ut, we get

‖ut‖2L2(Ω) +
1

p

d

dt
‖u‖p

W 1,p
0 (Ω)

+

∫
Ω

f(u)utdx−
∫

Ω

gutdx = 0.

We can rewrite this equality as follows

(4.9)
d

dt

[1

p

∫
Ω

a(x)|∇u|pdx+

∫
Ω

F (u)dx−
∫

Ω

gudx
]

= −‖ut‖2L2(Ω) ≤ 0,

where F (s) =
∫ s

0
f(τ)dτ . On the other hand, integrating (4.1) from t to t + 1

and using (4.4) we get∫ t+1

t

[
‖u‖p

W 1,p
0 (Ω,a)

+

∫
Ω

f(u)udx−
∫

Ω

gudx

]
ds ≤ ρ0

2

for all t ≥ T0. It follows from (1.3) that

F (u) ≤ f(u)u+
`

2
u2 for all u ∈ R.

Hence, we have

(4.10)

∫ t+1

t

[
1

p
‖u‖p

W 1,p
0 (Ω,a)

+

∫
Ω

F (u)dx−
∫

Ω

gudx

]
ds ≤ `+ 1

2
ρ0

for all t ≥ T0. Using the uniform Gronwall inequality, it follows from (4.9) and
(4.10) that

(4.11)
1

p
‖u‖p

W 1,p
0 (Ω,a)

+

∫
Ω

F (u)dx−
∫

Ω

gudx ≤ ρ2
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for all t ≥ T2 = T1 + 1, and ρ2 = C(`, ρ0, ρ1, ‖g‖L2(Ω)). Integrating (4.9) from
t to t+ 1 and using (4.11), we infer that

(4.12)

∫ t+1

t

‖ut‖2L2(Ω)ds ≤ ρ2.

Using the uniform Gronwall inequality once again, from (4.8) and (4.12) we
deduce that

(4.13) ‖ut(t)‖2L2(Ω) ≤ ρ3 for all t ≥ T3 = T2 + 1.

On the other hand, multiplying the first equation in (1.1) by Lp,au, using (1.3)
and the Cauchy inequality, we obtain

‖Lp,au‖2L2(Ω) = −
∫

Ω

utLp,audx−
∫

Ω

f ′(u)a(x)|∇u|pdx+

∫
Ω

gLp,audx

≤ `‖u‖p
W 1,p

0 (Ω,a)
+

1

2
‖Lp,au‖2L2(Ω) + ‖ut‖2L2(Ω) + ‖g‖2L2(Ω).

The following estimate is obtained from (4.7) and (4.13),

‖u(t)‖2(p−1)
D(Lp,a) = ‖Lp,au(t)‖2L2(Ω) ≤ ρ4 for all t ≥ T3.

This inequality implies the desired result. �

Since the embedding D(Lp,a) ↪→ W 1,p
0 (Ω, a) is compact (see Proposition

2.3), we immediately get the following result.

Theorem 4.5. Assume that assumptions (H1)-(H3) are satisfied. Then the
semigroup {S(t)}t≥0 associated to (1.1) has a global attractor AD(Lp,a) in

W 1,p
0 (Ω, a).

Remark 4.6. It is interesting to extend the results obtained in the present paper
to the case that the domain Ω is unbounded. In this case, the problem turns
to be much more complicated due to the lack of the compactness of necessary
Sobolev type embeddings. This interesting question, which was proposed by a
reviewer, will be the subject for our future work.
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