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UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS

FOR NON-AUTONOMOUS GENERALIZED 2D

PARABOLIC EQUATIONS

Jong Yeoul Park and Sun-Hye Park

Abstract. This paper is concerned with a generalized 2D parabolic
equation with a nonautonomous perturbation

−∆ut + α2∆2ut + µ∆2u+∇ ·
−→
F (u) +B(u, u) = ǫg(x, t).

Under some proper assumptions on the external force term g, the up-
per semicontinuity of pullback attractors is proved. More precisely, it is
shown that the pullback attractor {Aǫ(t)}t∈R of the equation with ǫ > 0
converges to the global attractor A of the equation with ǫ = 0.

1. Introduction

This work is concerned with the upper semicontinuity of pullback attractors
for non-autonomous generalized 2D parabolic equations. Let Ω be a bounded
domain in R

2 with smooth boundary ∂Ω and (x1, x2) ∈ Ω. Consider a non-
autonomous generalized 2D parabolic equation

−∆ut + α2∆2ut + µ∆2u+∇ ·
−→
F (u) +B(u, u) = ǫg(x, t) in Ω× [τ,∞),

u =
∂u

∂ν
= 0 on ∂Ω× [τ,∞),(1.1)

u(x, τ) = uτ (x) in Ω,

where ǫ is a small positive parameter, ut = ∂u
∂t
, α, µ are positive constants,

−→
F is a nonlinear vector function, g is an external forcing term with g ∈
L2
loc(R, L

2(Ω)), B(u, v) = ∂u
∂x1

∂∆v
∂x2

− ∂u
∂x2

∂∆v
∂x1

and ν is the unit outward nor-
mal vector to ∂Ω.

When ǫ = 1 and g(x, t) = g(x), that is, g is independent of time t, Polat [9]
established the existence of a global attractor to the autonomous problem (1.1)
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in unbounded domain, and then Park and Park [7] showed the existence of a
pullback attractor for the nonautonomous case (1.1) with ǫ = 1. They used the
technique of uniform estimates on the tails of solutions to prove the asymptotic
compactness of the solution operator. This technique was developed by Wang
[12] to investigate the behavior of reaction-diffusion equations in unbounded
domains.

On the other hand, several authors have studied the upper and lower semi-
continuity of attractors of perturbed dynamical systems for the autonomous
case [1, 4, 6] and for the nonautonomous case [2, 3, 10, 13]. This continuous
property implies some stability of attractors for the corresponding equations
with some perturbations. Caraballo et al. [2] introduced a theorem on the
upper semicontinuity on random attractors, and then applied the result to
Navier-Stokes equations and a reaction-diffusion problem with additive noise.
The authors of [5, 11, 14] considered the asymptotically regular properties of
semi-folws/processes given by hyperbolic wavelike equations. Wang and Qin
[13] established a technical method to verify the pullback asymptotically com-
pactness by applying the theory of [2] and using ideas given in [5, 11, 14],
and then proved the upper semicontinuous property of pullback attractors for
nonclassical diffusion equations by adapting the method to overcome some dif-
ficulty generated by the equations which are similar to hyperbolic equations.
Motivated by these works, we show the upper semicontinuity of pullback at-
tractors for problem (1.1). Though the technique closely follows the arguments
of [13] with some necessary modification due to the nature of the problem
treated here, it is interesting to investigate whether there is the similar upper
semicontinuity result as in [13] for the non-autonomous system (1.1). Owing
to properties of the bilinear term B(u, u), the estimates are delicate. This
difficulty is overcome by using some embedding relations of spaces.

The plan of this paper is as follows. In Section 2, we give some abstract
results concerning pullback attractors for non-autonomous dynamical systems
and technique methods to verify the upper semicontinuity of pullback attrac-
tors. In Section 3, we derive some estimates of solutions, and then prove the
upper semicontinuity of pullback attractors.

2. Preliminaries and abstract results

In this section, we give some known results about the upper semicontinuity
of pullback attractors. These results and the related basic definitions can be
found in [2, 13] and references therein.

Let X be a Banach space with norm || · ||X and metric dX(·, ·). A two-
parameter family of mappings {U(t, τ)}t≥τ is said to be a continuous process
in X if

(i) U(t, s)U(s, τ) = U(t, τ) for τ ≤ s ≤ t, τ ∈ R,
(ii) U(τ, τ) = Id (identity operator in X) for τ ∈ R,
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(iii) U(t, τ) : X → X is continuous for τ ≤ t.

We denote by distX(B1, B2) the Hausdorff semidistance in X defined by

distX(B1, B2) = sup
x∈B1

inf
y∈B2

dX(x, y) for B1, B2 ⊂ X.

Definition 2.1. A family of subsets D = {D(t)}t∈R is said to be pullback
absorbing with respect to the continuous process {U(t, τ)}t≥τ if, for every t ∈ R

and all bounded subset D ⊂ X, there exists T (t,D) > 0 such that

U(t, t− τ)D ⊂ D(t) for all τ ≥ T (t,D).

Definition 2.2. A family of compact setA = {A(t)}t∈R is said to be a pullback
attractor if it satisfies

(i) U(t, τ)A(τ) = A(t) for all t ≥ τ ;
(ii) limτ→∞ distX(U(t, t− τ)D,A(t)) = 0 for all bounded subset D ⊂ X.

Let S(t) : X → X, t ∈ R
+, be a C0-semigroup defined on X. Suppose

that there exists a global attractor A for S(t). We perturb the semigroup by
a nonautonomous term depending on a small parameter ǫ ∈ (0, ǫ0], so that we
obtain a continuous process Uǫ(·, ·) driven by the nonautonomous dynamical
system.

Theorem 2.1 ([2]). Assume that the following conditions hold:
(i) for each t ∈ R, τ ∈ R

+, and x ∈ X,

(H1) lim
ǫ→0+

dX(Uǫ(t, t− τ)x, S(τ)x) = 0 uniformly on bounded sets of X ;

(ii) for any ǫ ∈ (0, ǫ0], there exists a pullback attractor Aǫ = {Aǫ(t)}t∈R;
(iii) there exists a compact set K ⊂ X such that

(H2) lim
ǫ→0+

distX(Aǫ(t),K) = 0 for any t ∈ R.

Then, Aǫ and A have the upper semicontinuity, that is

lim
ǫ→0+

distX(Aǫ(t), A) = 0 for any t ∈ R.

Theorem 2.2 ([13]). Let the family Dǫ = {Dǫ(t)}t∈R be pullback absorbing for

Uǫ(·, ·), and for each ǫ ∈ (0, ǫ0], Kǫ = {Kǫ(t)}t∈R be a family of compact sets

in X. Suppose Uǫ(·, ·) = U1,ǫ(·, ·) + U2,ǫ(·, ·) : R× R×X → X satisfies

(i) for any t ∈ R and ǫ ∈ (0, ǫ0],

||U1,ǫ(t, t− τ)x||X ≤ Φ(t, τ) for all x ∈ Dǫ(t− τ), τ > 0,

where Φ(·, ·) : R× R → R
+ with limτ→∞ Φ(t, τ) = 0 for each t ∈ R;

(ii) for any t ∈ R, ǫ ∈ (0, ǫ0] and T ≥ 0, ∪0≤τ≤TU2,ǫ(t, t − τ)Dǫ(t − τ) is

bounded, and for any t ∈ R, there exists a Tt,Dǫ0
> 0, which is independent of

ǫ, such that

U2,ǫ(t, t− τ)Dǫ(t− τ) ⊂ Kǫ(t) for all τ ≥ Tt,Dǫ0
, ǫ ∈ (0, ǫ0],
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and there exists a compact set K ⊂ X such that

(H2)
′ lim

ǫ→0+
distX(Kǫ(t),K) = 0 for any t ∈ R.

Then for each ǫ ∈ (0, ǫ0], there exists a pullback attractor Aǫ = {Aǫ(t)}t∈R and

(H2) holds.

3. Upper semicontinuity of pullback attractors

In this section, we establish the relationship between the pullback attractors
Aǫ = {Aǫ(t)}t∈R for the perturbed equation (1.1) with ǫ > 0 and the global
attractor A for the unperturbed equation (1.1) with ǫ = 0.

We denote by Lp(Ω) andWm,p(Ω), Wm,p
0 (Ω) the usual Lebesque and Sobolev

spaces, respectively. For simplicity, we denote || · ||Wm,p(Ω) and || · ||Lp(Ω) by
|| · ||m,p and || · ||p, respectively. Moreover, we denote || · ||2 by || · ||. (·, ·) denotes
the inner product of L2(Ω) and || · || the induced norm. Let A = ∆2 with
domain H2

0 (Ω)∩H4(Ω), and consider a family of Hilbert spaces D(A
s
2 ), s ∈ R,

with the scalar product and the norm

(·, ·)
D(A

s
2 )

= (A
s
2 ·, A

s
2 ·), || · ||

D(A
s
2 )

= ||A
s
2 · ||.

Moreover we recall (see e.g. [8, 13]) that
(i) The embedding D(A

s
2 ) →֒ D(A

r
2 ) is continuous for 0 < r < s;

(ii) The embedding D(A
s
2 ) →֒ L

4
2−4s is continuous for 0 ≤ s < 1

2 .
For convenience, we set

Hs = D(A
s
2 ), s ∈ R,

then H0 = L2(Ω), H1 = H2(Ω) ∩H1
0 (Ω) and H2 = H4(Ω) ∩H2

0 (Ω).
Throughout this article, we will use the following inequalities:

Sobolev inequality : ||u||p ≤ c||u||1,2 for u ∈ H1(Ω) and p ≥ 2;

Ladyzhenskaya inequality : ||u||4 ≤ c||u||
1
2 ||u||

1
2

1,2 for u ∈ H1(Ω).

Let λ and λ1 be the constants with

||u||2 ≤
1

λ1
||∆u||2, ||∇u||2 ≤

1

λ
||∆u||2 for u ∈ H2

0 (Ω).(3.1)

We put

δ = min{
λµ

2
,

µ

2α2
}.

For the nonlinear vector function
−→
F (s) = (F1(s), F2(s)), we denote

fi(s) = F ′
i (s), Fi(s) =

∫ s

0

Fi(r)dr,

−→
f (s) = (f1(s), f2(s)) and

−→
F (s) = (F1(s),F2(s)) ∀s ∈ R.

We assume that Fi(i = 1, 2) is a smooth function satisfying

(3.2) Fi(0) = 0, |Fi(s)| ≤ c1|s|+ c2|s|
2 for s ∈ R,
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(3.3) |fi(s)| ≤ c3 + c4|s| and |Fi(s)| ≤ c5|s|
2 + c6|s|

3 for s ∈ R,

where ci, i = 1, 2, . . . , 6, is a positive constant.
For the external force g ∈ L2

loc(R, L
2(Ω)), we assume that there exist β ≥ 0

and 0 ≤ η < δ
2 such that

(3.4) ||g(t)||2 ≤ βeη|t|.

This infers that for all t ∈ R,

(3.5)

∫ t

−∞

eδs||g(s)||2ds < ∞,

∫ t

−∞

∫ s

−∞

eδr||g(r)||2drds < ∞

and

(3.6)

∫ t

−∞

(

∫ s

−∞

e
δ
2
r||g(r)||2dr

)2

ds < ∞ for all t ∈ R.

Now, we recall the existence of global attractors for autonomous system (1.1)
with ǫ = 0.

Theorem 3.1 (see e.g. [9]). Assume that (3.2)-(3.6) hold. Then, problem

(1.1) possesses a unique global solution uǫ satisfying uǫ ∈ C([τ,∞),H1) for

every ǫ ≥ 0, τ ∈ R and uτ ∈ H1, and the solution is continuous with respect to

the initial condition uτ in H1.

Moreover, the semigroup {S(t)}t∈R generated by problem (1.1) with ǫ = 0
possesses a global attractor A in H1.

We construct a continuous process on H1 generated by problem (1.1). De-
fine the solution operator Uǫ(t, τ) on H1 as Uǫ(t, τ)uτ = uǫ(t, τ ;uτ ), where
uǫ(t, τ ;uτ ) is the solution of (1.1) with initial data uτ ∈ H1 at time τ. Then
for each ǫ > 0, the solution operator Uǫ(t, τ) forms a continuous process on H1.

We decompose the solution Uǫ(t, τ)uτ of (1.1) as follows:

Uǫ(t, τ)uτ = U1,ǫ(t, τ)uτ + U2,ǫ(t, τ)uτ ,

where U1,ǫ(t, τ)uτ = v(t) and U2,ǫ(t, τ)uτ = w(t) solve the following equations






−∆vt + α2∆2vt + µ∆2v +∇ ·
−→
F (v) +B(v, v) = 0 in Ω× [τ,∞),

v = ∂v
∂ν

= 0 on ∂Ω× [τ,∞),
v(x, τ) = uτ (x) in Ω,

(3.7)

and















−∆wt + α2∆2wt + µ∆2w +∇ · {
−→
F (uǫ)−

−→
F (v)} +B(uǫ, uǫ)−B(v, v)

= ǫg(x, t) in Ω× [τ,∞),
w = ∂w

∂ν
= 0 on ∂Ω× [τ,∞),

w(x, τ) = 0 in Ω.

(3.8)

We derive some estimates of solutions to problem (1.1), (3.7) and (3.8) by
employing the technique in [13]. For convenience, hereafter we denote c an
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arbitrary positive constant independent of t, τ and ǫ, which may be different
from line to line or even in the same line.

Lemma 3.1. Assume that (3.2)-(3.6) hold. Then, for any ǫ > 0, the pro-

cess Uǫ(·, ·) associated with problem (1.1) has a pullback absorbing set Dǫ =
{Dǫ(t)}t∈R in H1.

Proof. Taking inner product of the first equation of (1.1) with uǫ in L2(Ω), we
have

1

2

d

dt
(||∇uǫ||2 + α2||∆uǫ||2) + µ||∆uǫ||2

+

∫

Ω

(∇ ·
−→
F (uǫ))uǫdx+ (B(uǫ, uǫ), uǫ) = ǫ(g, uǫ).

Since
∫

Ω

(∇ ·
−→
F (uǫ))uǫdx = −

∫

Ω

−→
F (uǫ) · ∇uǫdx = −

∫

Ω

∇ ·
−→
F (uǫ)dx = 0,

(B(uǫ, uǫ), uǫ) = 0

and

ǫ(g, uǫ) ≤
µ

2
||∆uǫ||2 +

ǫ2||g||2

2λ1µ
,

it holds that

d

dt
(||∇uǫ||2 + α2||∆uǫ||2) + µ||∆uǫ||2 ≤

ǫ2||g||2

λ1µ
.

Owing to δ = min{λµ
2 , µ

2α2 }, we have

d

dt
(||∇uǫ||2 + α2||∆uǫ||2) + δ(||∇uǫ||2 + α2||∆uǫ||2) ≤

ǫ2||g||2

µλ1
.

Multiplying this by eδt and integrating it over (t− τ, t), we get

||∇uǫ(t)||2 + α2||∆uǫ(t)||2(3.9)

≤ e−δτ (||∇uǫ(t− τ)||2 + α2||∆uǫ(t− τ)||2) +
ǫ2e−δt

µλ1

∫ t

t−τ

eδs||g(s)||2ds.

Let

(3.10) rǫ(t) =
2ǫ2e−δt

µλ1

∫ t

−∞

eδs||g(s)||2ds

and

(3.11) Dǫ(t) = {u ∈ H1 : ||u||2H1 ≤ rǫ(t)},

then Dǫ = {Dǫ(t)}t∈R is pullback absorbing for Uǫ(·, ·) in H1. Indeed, for any
t ∈ R, any bounded set B ⊂ H1 and ut−τ ∈ B, (3.9) ensures the existence of
Tt,B > 0 satisfying

(3.12) ||Uǫ(t, t− τ)ut−τ ||
2
H1 ≤ rǫ(t) for τ ≥ Tt,B.
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This completes the proof. �

Lemma 3.2. Let Dǫ(t) be given in (3.11). Then, for any t ∈ R, the solution

of (3.7) satisfies

||U1,ǫ(t, t−τ)ut−τ ||
2
H1 ≤ cǫ2e−δt

∫ t−τ

−∞

eδs||g(s)||2ds for τ ≥ 0, ut−τ ∈ Dǫ(t−τ).

Proof. Taking the inner product of (3.7) with v in L2(Ω), we have

d

dt
(||∇v||2 + α2||∆v||2) + δ(||∇v||2 + α2||∆v||2) ≤ 0.

Multiplying this by eδt and integrating it over (t− τ, t), we derive

||∇v(t)||2 + α2||∆v(t)||2 ≤ e−δτ (||∇v(t− τ)||2 + α2||∆v(t− τ)||2).

For v(t− τ) = ut−τ ∈ Dǫ(t− τ), it follows that

||U1,ǫ(t, t− τ)ut−τ ||
2
H1 ≤ ce−δτ ǫ2e−δ(t−τ)

∫ t−τ

−∞

eδs||g(s)||2ds.

This finishes the proof. �

Lemma 3.3. Let Dǫ = {Dǫ(t)}t∈R be given in (3.11). For any t ∈ R, there

exists Tt,Dǫ0
> 0 and Iǫ(t) such that

(3.13) ||U2,ǫ(t, t− τ)ut−τ ||
2
H1+σ ≤ Iǫ(t) for τ ≥ Tt,Dǫ0

and ut−τ ∈ Dǫ(t− τ),

where 0 < σ < 1
6 .

Proof. Multiplying (3.8) by Aσw in L2(Ω), we get

d

dt

{

||A
1+2σ

4 w||2 + α2||A
1+σ
2 w||2

}

+ 2µ||A
1+σ
2 w||2

(3.14)

= 2(∇ ·
−→
F (v)−∇ ·

−→
F (uǫ), Aσw) + 2(B(v, v)−B(uǫ, uǫ), Aσw) + 2(ǫg, Aσw).

The continuous embedding D(A
1+σ
2 ) →֒ D(Aσ), D(A

1+σ
2 ) →֒ D(A

1
4
+σ), the

condition (3.2), Sobolev inequality and (3.1) give

2(ǫg, Aσw) ≤ 2ǫ||g||||Aσw|| ≤ cǫ2||g||2 +
µ

3
||A

1+σ
2 w||2,

2(∇ ·
−→
F (v)−∇ ·

−→
F (uǫ), Aσw)

= 2(
−→
F (v)−

−→
F (uǫ),∇Aσw)

≤ c||
−→
F (uǫ)−

−→
F (v)||||A

1
4
+σw||

≤ c(||uǫ||2 + ||uǫ||44 + ||v||2 + ||v||44) +
µ

3
||A

1+σ
2 w||2

≤c (||∆uǫ||2 + ||∆uǫ||4 + ||∆v||2 + ||∆v||4) +
µ

3
||A

1+σ
2 w||2.
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Using Sobolev inequality, the embeddings

D(A
1
6 ) →֒ L6(Ω), D(A

1+σ
2 ) →֒ D(A

5
12

+σ)

and w = uǫ − v, we find

2(B(v, v)−B(uǫ, uǫ), Aσw)

= − 2(B(v, w), Aσw) − 2(B(w, v), Aσw)− 2(B(w,w), Aσw)

= 2

∫

Ω

( ∂v

∂x2

∂∆w

∂x1
−

∂v

∂x1

∂∆w

∂x2

)

Aσwdx + 2

∫

Ω

( ∂w

∂x2

∂∆v

∂x1
−

∂w

∂x1

∂∆v

∂x2

)

Aσwdx

+ 2

∫

Ω

( ∂w

∂x2

∂∆w

∂x1
−

∂w

∂x1

∂∆w

∂x2

)

Aσwdx

= 2

∫

Ω

( ∂v

∂x1
∆w

∂Aσw

∂x2
−

∂v

∂x2
∆w

∂Aσw

∂x1

)

dx

+ 2

∫

Ω

( ∂w

∂x1
∆v

∂Aσw

∂x2
−

∂w

∂x2
∆v

∂Aσw

∂x1

)

dx

+ 2

∫

Ω

( ∂w

∂x1
∆w

∂Aσw

∂x2
−

∂w

∂x2
∆w

∂Aσw

∂x1

)

dx

≤ 4
(

||∇v||3||∆w||+ ||∇w||3||∆v||+ ||∇w||3||∆w||
)

||A
1
4
+σw||6

≤ c
(

||∆v||||∆w|| + ||∆w||2
)

||A
5
12

+σw||

≤ c
(

||∆v||4 + ||∆uǫ||4
)

+
µ

3
||A

1+σ
2 w||2.

Substituting these into (3.14), we see that

d

dt
{||A

1+2σ
4 w||2 + α2||A

1+σ
2 w||2}+ δ(||A

1+2σ
4 w||2 + α2||A

1+σ
2 w||2)

≤ cǫ2||g(t)||2 + c
(

||∆uǫ||2 + ||∆uǫ||4 + ||∆v||2 + ||∆v||4
)

.

Multiplying this by eδt and integrating it over (t− τ, t), we obtain

||A
1+2σ

4 w(t)||2 + α2||A
1+σ
2 w(t)||2(3.15)

≤ ce−δt

∫ t

t−τ

eδs(||∆uǫ(s)||2 + ||∆uǫ(s)||4 + ||∆v(s)||2 + ||∆v(s)||4)ds

+ cǫ2e−δt

∫ t

t−τ

eδs||g(s)||2ds,

here we used the fact that w(t − τ) = 0 in Ω.
From (3.12) and Lemma 3.2, there exists Tt,Dǫ0

> 0 satisfying
∫ t

t−τ

eδs(||∆uǫ(s)||2 + ||∆uǫ(s)||4 + ||∆v(s)||2 + ||∆v(s)||4)ds

≤ cǫ2
∫ t

t−τ

∫ s

−∞

eδr||g(r)||2drds+ cǫ4
∫ t

t−τ

eδs
(

e−δs

∫ s

−∞

eδr||g(r)||2dr
)2

ds



UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS 1157

+ cǫ2
∫ t

t−τ

∫ s−τ

−∞

eδr||g(r)||2drds+cǫ4
∫ t

t−τ

eδs
(

e−δs

∫ s−τ

−∞

eδr||g(r)||2dr
)2

ds

≤ cǫ2
∫ t

t−τ

∫ s

−∞

eδr||g(r)||2drds+ cǫ4
∫ t

t−τ

eδs
(

e−
δs
2

∫ s

−∞

e
δr
2 ||g(r)||2dr

)2

ds

≤ cǫ2
∫ t

−∞

∫ s

−∞

eδr||g(r)||2drds+ cǫ4
∫ t

−∞

(

∫ s

−∞

e
δr
2 ||g(r)||2dr

)2

ds.

Applying this to (3.15), we deduce that

||U2,ǫ(t, t− τ)ut−τ ||
2
H1+σ

≤ cǫ2e−δt

∫ t

−∞

eδs||g(s)||2ds+ cǫ2
∫ t

−∞

∫ s

−∞

eδr||g(r)||2drds

+ cǫ4
∫ t

−∞

(

∫ s

−∞

e
δr
2 ||g(r)||2dr

)2

ds := Iǫ(t),

and obtain the desired result. �

Lemma 3.4. Let B be a bounded subset in H1, t ∈ R, τ ∈ R
+ and u0 ∈ B.

If uǫ(t) = Uǫ(t, t − τ)u0 and u(t) = S(τ)u0 represent the solutions of the

perturbed and the unperturbed equations with the same initial data u0 at time

t− τ, respectively, then they satisfy

(3.16) lim
ǫ→0+

sup
u0∈B

||Uǫ(t, t− τ)u0 − S(τ)u0||H1 = 0.

Proof. Let zǫ(t) = uǫ(t)− u(t), then zǫ satisfies















−∆zǫt + α2∆2zǫt + µ∆2zǫ = ∇ ·
−→
F (u)−∇ ·

−→
F (uǫ) +B(u, u)−B(uǫ, uǫ)

+ǫg(x, t) in Ω× [τ,∞),

zǫ = ∂zǫ

∂ν
= 0 on ∂Ω× [τ,∞),

zǫ(t− τ) = 0 in Ω.

(3.17)

Multiplying (3.17) by zǫ, we get

1

2

d

dt
(||∇zǫ||2 + α2||∆zǫ||2) + µ||∆zǫ||2(3.18)

= (∇ ·
−→
F (u)−∇ ·

−→
F (uǫ), zǫ) + (B(u, u)−B(uǫ, uǫ), zǫ) + ǫ(g, zǫ)

= I1 + I2 + I3.

Making use of mean value theorem, Hölder inequality, (3.3), Ladyzhenskaya
inequality and (3.1), we find that

|I1| = |(
−→
F (u)−

−→
F (uǫ),∇zǫ)|

=
∣

∣

∣

∫

Ω

{

(F1(u)− F1(u
ǫ)
∂zǫ

∂x1
+ (F2(u)− F2(u

ǫ)
∂zǫ

∂x2

}

dx
∣

∣

∣

≤

∫

Ω

{

|F ′
1(κu+(1−κ)uǫ)(u−uǫ)||

∂zǫ

∂x1
|+|F ′

2(pu+(1−p)uǫ)(u−uǫ)||
∂zǫ

∂x2
|
}

dx
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=

∫

Ω

{

|f1(κu+(1−κ)uǫ)(u−uǫ)||
∂zǫ

∂x1
|+|f2(pu+(1−p)uǫ)(u−uǫ)||

∂zǫ

∂x2
|
}

dx

≤ c(1 + ||uǫ||+ ||u||)||zǫ||4||∇zǫ||4

≤ c(1 + ||uǫ||+ ||u||)||zǫ||
1
2 ||∇zǫ||||∆zǫ||

1
2

≤ c(1 + ||∆uǫ||+ ||∆u||)||∆zǫ||2 for 0 ≤ κ, p ≤ 1,

I2 = (B(u, u− uǫ), zǫ) + (B(u− uǫ, uǫ), zǫ)

≤ 2||∇u||4||∆zǫ||||∇zǫ||4 + 2||∇zǫ||4||∆uǫ||||∇zǫ||4

≤ c||∇u||
1
2 ||∆u||

1
2 ||∆zǫ||||∇zǫ||

1
2 ||∆zǫ||

1
2 + c||∇zǫ||||∆zǫ||||∆uǫ||

≤ c(||∆u||+ ||∆uǫ||)||∆zǫ||2,

and

I3 ≤ µ||∆zǫ||2 +
ǫ2||g||2

4λ1µ
.

Adapting these to (3.18), we observe

d

dt
(||∇zǫ||2 + α2||∆zǫ||2) ≤ c(1 + ||∆u||+ ||∆uǫ||)||∆zǫ||2 + cǫ2||g||2.

This yields that

||∇zǫ(t)||2 + α2||∆zǫ(t)||2

≤
(

||∇zǫ(t− τ)||2 + α2||∆zǫ(t− τ)||2 +

∫ t

t−τ

cǫ2||g(s)||2ds
)

· e
∫

t

t−τ
c(1+||∆u(s)||+||∆uǫ(s)||)ds

≤
(

cǫ2
∫ t

−∞

||g(s)||2ds
)

e
∫

t

t−τ
c(1+||∆u(s)||+||∆uǫ(s)||)ds,

and which implies (3.16). �

The main result of the paper reads as follows.

Theorem 3.2. Suppose (3.2)-(3.6) hold. Then the pullback attractor Aǫ =
{Aǫ(t)}t∈R for (1.1) with ǫ > 0 and the global attractor A for (1.1) with ǫ = 0
satisfy

(3.19) lim
ǫ→0+

distX(Aǫ(t), A) = 0 for any t ∈ R.

Proof. We put Φ(t, τ) = cǫ20e
−δt

∫ t−τ

−∞ eδs||g(s)||2ds. Then the condition (3.5)

gives that limτ→∞ Φ(t, τ) = 0. Thus, for any t ∈ R and ǫ ∈ (0, ǫ0], Lemma 3.2
ensures the condition (i) of Theorem 2.2. Since the embedding H1+σ →֒ H1 is
compact, Lemma 3.3 guarantees the condition (ii) of Theorem 2.2. By Lemma
3.4, the condition (H1) holds. Consequently, from Lemma 3.1, Theorem 2.2
and Theorem 2.1, we obtain (3.19). �



UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS 1159

References

[1] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Ams-
terdam, 1992.

[2] T. Caraballo, J. A. Langa, and J. C. Robinson, Upper semicontinuity of attractors for

small ramdon perturbations of dynamical systems, Comm. Partial Differential Equations
23 (1998), no. 9-10, 1557–1581.

[3] A. N. Carvalho, J. A. Langa, and J. C. Robinson, On the continuity of pullback attractors

for evolution processes, Nonlinear Anal. 71 (2009), no. 5-6, 1812–1824.
[4] C. M. Elliot and I. N. Kostin, Lower semicontinuity of a nonhyperbolic attractor for the

viscous Cahn-Hilliard equation, Nonlinearity 9 (1996), 678–702.
[5] J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988.
[6] J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly per-

turbed hyperbolic equation, J. Differential Equations 73 (1988), no. 2, 197–214.
[7] J. Y. Park and S. H. Park, Pullback attractors for a non-autonomous generalized 2D

parabolic system in an unbounded domain, Nonlinar Anal. 74 (2011), no. 12, 4046–4057.
[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Springer-Verlag, New York, 1983.
[9] M. Polat, Global attractors for a generalized 2D parabolic system in an unbounded

domain, Appl. Anal. 8 (2009), no. 1, 63–74.
[10] J. C. Robinson, Stability of random attractors under perturbation and approximation,

J. Differential Equations 186 (2002), no. 2, 652–669.
[11] C. Y. Sun and M. H. Yang, Dynamics of the nonclassical diffusion equations, Asymptot.

Anal. 59 (2008), no. 1-2, 51–81.
[12] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D

128 (1999), no. 1, 41–52.
[13] Y. Wang and Y. Qin, Upper semicontinuity of pullback attractors for nonclassical dif-

fusion equations, J. Math. Phys. 51 (2010), Article ID. 022701.
[14] S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation

with a critical growth exponent, Commun. Pure Appl. Anal. 3 (2004), no. 4, 921–934.

Jong Yeoul Park

Department of Mathematics

Pusan National University

Busan 609-735, Korea

E-mail address: jyepark@pusan.ac.kr

Sun-Hye Park

Center for Education Accreditation

Pusan National University

Busan 609-735, Korea

E-mail address: sh-park@pusan.ac.kr


