• 제목/요약/키워드: geodesics

검색결과 66건 처리시간 0.022초

BIHARMONIC CURVES IN FINSLER SPACES

  • Voicu, Nicoleta
    • 대한수학회지
    • /
    • 제51권6호
    • /
    • pp.1105-1122
    • /
    • 2014
  • Biharmonic curves are a generalization of geodesics, with applications in elasticity theory and computer science. The paper proposes a first study of biharmonic curves in spaces with Finslerian geometry, covering the following topics: a deduction of their equations, specific properties and existence of non-geodesic biharmonic curves for some classes of Finsler spaces. Integration of the biharmonic equation is presented for two concrete Finsler metrics.

일정 스켈럽 높이 공구경로와 축지평행선의 관계 (Constant Scallop Height Tool Paths and Geodesic Parallels)

  • 김태정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.127-128
    • /
    • 2006
  • We introduce a novel approach for generating constant scallop height tool paths. We derive a Riemannian metric tensor from curvature tensors of a part surface and a tool surface. Then, we construct geodesic parallels from the newly constructed metric. Those geodesic parallels constitute an asymptotically-correct family of constant scallop height tool paths.

  • PDF

On Special finsler Spaces With Common Geodesics

  • Kim, Byung-Doo;Park, Ha-Yong
    • 대한수학회논문집
    • /
    • 제15권2호
    • /
    • pp.331-338
    • /
    • 2000
  • In the present paper, we investigate a problem in a sym-metric Finsler space, which is a special space. First we prove that if a symmetric space remains to be a symmetric one under the Z-projective change, then the space is of zero curvature. Further we will study W-recurrent space and D-recurrent space under the pro-jective change.

  • PDF

WARPED PRODUCT SKEW SEMI-INVARIANT SUBMANIFOLDS OF LOCALLY GOLDEN RIEMANNIAN MANIFOLDS

  • Ahmad, Mobin;Qayyoom, Mohammad Aamir
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.1-16
    • /
    • 2022
  • In this paper, we define and study warped product skew semi-invariant submanifolds of a locally golden Riemannian manifold. We investigate a necessary and sufficient condition for a skew semi-invariant submanifold of a locally golden Riemannian manifold to be a locally warped product. An equality between warping function and the squared normed second fundamental form of such submanifolds is established. We also construct an example of warped product skew semi-invariant submanifolds.

RICCI ρ-SOLITON IN A PERFECT FLUID SPACETIME WITH A GRADIENT VECTOR FIELD

  • Dibakar Dey;Pradip Majhi
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.235-242
    • /
    • 2023
  • In this paper, we studied several geometrical aspects of a perfect fluid spacetime admitting a Ricci ρ-soliton and an η-Ricci ρ-soliton. Beside this, we consider the velocity vector of the perfect fluid space time as a gradient vector and obtain some Poisson equations satisfied by the potential function of the gradient solitons.

MEDICAL IMAGE ANALYSIS USING HIGH ANGULAR RESOLUTION DIFFUSION IMAGING OF SIXTH ORDER TENSOR

  • K.S. DEEPAK;S.T. AVEESH
    • Journal of applied mathematics & informatics
    • /
    • 제41권3호
    • /
    • pp.603-613
    • /
    • 2023
  • In this paper, the concept of geodesic centered tractography is explored for diffusion tensor imaging (DTI). In DTI, where geodesics has been tracked and the inverse of the fourth-order diffusion tensor is inured to determine the diversity. Specifically, we investigated geodesic tractography technique for High Angular Resolution Diffusion Imaging (HARDI). Riemannian geometry can be extended to a direction-dependent metric using Finsler geometry. Euler Lagrange geodesic calculations have been derived by Finsler geometry, which is expressed as HARDI in sixth order tensor.

RULED MINIMAL SURFACES IN PRODUCT SPACES

  • Jin, Yuzi;Kim, Young Wook;Park, Namkyoung;Shin, Heayong
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1887-1892
    • /
    • 2016
  • It is well known that the helicoids are the only ruled minimal surfaces in ${\mathbb{R}}^3$. The similar characterization for ruled minimal surfaces can be given in many other 3-dimensional homogeneous spaces. In this note we consider the product space $M{\times}{\mathbb{R}}$ for a 2-dimensional manifold M and prove that $M{\times}{\mathbb{R}}$ has a nontrivial minimal surface ruled by horizontal geodesics only when M has a Clairaut parametrization. Moreover such minimal surface is the trace of the longitude rotating in M while translating vertically in constant speed in the direction of ${\mathbb{R}}$.

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1331-1343
    • /
    • 2017
  • A curve ${\gamma}$ immersed in the three-dimensional sphere ${\mathbb{S}}^3$ is said to be a slant helix if there exists a Killing vector field V(s) with constant length along ${\gamma}$ and such that the angle between V and the principal normal is constant along ${\gamma}$. In this paper we characterize slant helices in ${\mathbb{S}}^3$ by means of a differential equation in the curvature ${\kappa}$ and the torsion ${\tau}$ of the curve. We define a helix surface in ${\mathbb{S}}^3$ and give a method to construct any helix surface. This method is based on the Kitagawa representation of flat surfaces in ${\mathbb{S}}^3$. Finally, we obtain a geometric approach to the problem of solving natural equations for slant helices in the three-dimensional sphere. We prove that the slant helices in ${\mathbb{S}}^3$ are exactly the geodesics of helix surfaces.

POSITIVENESS FOR THE RIEMANNIAN GEODESIC BLOCK MATRIX

  • Hwang, Jinmi;Kim, Sejong
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.917-925
    • /
    • 2020
  • It has been shown that the geometric mean A#B of positive definite Hermitian matrices A and B is the maximal element X of Hermitian matrices such that $$\(\array{A&X\\X&B}\)$$ is positive semi-definite. As an extension of this result for the 2 × 2 block matrix, we consider in this article the block matrix [[A#wijB]] whose (i, j) block is given by the Riemannian geodesics of positive definite Hermitian matrices A and B, where wij ∈ ℝ for all 1 ≤ i, j ≤ m. Under certain assumption of the Loewner order for A and B, we establish the equivalent condition for the parameter matrix ω = [wij] such that the block matrix [[A#wijB]] is positive semi-definite.