Browse > Article
http://dx.doi.org/10.4134/CKMS.c200033

POSITIVENESS FOR THE RIEMANNIAN GEODESIC BLOCK MATRIX  

Hwang, Jinmi (Department of Mathematics Chungbuk National University)
Kim, Sejong (Department of Mathematics Chungbuk National University)
Publication Information
Communications of the Korean Mathematical Society / v.35, no.3, 2020 , pp. 917-925 More about this Journal
Abstract
It has been shown that the geometric mean A#B of positive definite Hermitian matrices A and B is the maximal element X of Hermitian matrices such that $$\(\array{A&X\\X&B}\)$$ is positive semi-definite. As an extension of this result for the 2 × 2 block matrix, we consider in this article the block matrix [[A#wijB]] whose (i, j) block is given by the Riemannian geodesics of positive definite Hermitian matrices A and B, where wij ∈ ℝ for all 1 ≤ i, j ≤ m. Under certain assumption of the Loewner order for A and B, we establish the equivalent condition for the parameter matrix ω = [wij] such that the block matrix [[A#wijB]] is positive semi-definite.
Keywords
Riemannian geodesic; Loewner order; Schur complement; stochastic matrix;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203-241. https://doi.org/10.1016/0024-3795(79)90179-4   DOI
2 R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2007.
3 R. E. Curto and L. A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), no. 2, 202-246. https://doi.org/10.1007/BF01200218   DOI
4 R. A. Horn and C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, Cambridge, 2013.
5 S. Kim, H. Lee, and Y. Lim, Geometric mean block matrices, Linear Algebra Appl. 575 (2019), 299-313. https://doi.org/10.1016/j.laa.2019.04.008   DOI
6 F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1979/80), no. 3, 205-224. https://doi.org/10.1007/BF01371042   DOI
7 W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Mathematical Phys. 8 (1975), no. 2, 159-170. https://doi.org/10.1016/0034-4877(75)90061-0   DOI