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RICCI ρ-SOLITON IN A PERFECT FLUID SPACETIME

WITH A GRADIENT VECTOR FIELD

Dibakar Dey and Pradip Majhi

Abstract. In this paper, we studied several geometrical aspects of a per-

fect fluid spacetime admitting a Ricci ρ-soliton and an η-Ricci ρ-soliton.
Beside this, we consider the velocity vector of the perfect fluid space time

as a gradient vector and obtain some Poisson equations satisfied by the
potential function of the gradient solitons.

1. Introduction

The spacetime of general relativity can be modelled as a 4-dimensional
Lorentzian manifold of signature (1, 3) or equivalently, (3, 1). Relativistic fluid
models are of great interest in different branches of astrophysics, nuclear physics
etc. Perfect fluids are used in general relativity to model idealized distribution
of matter, such as interior of a star or an isotropic universe. Einstein’s gravita-
tional equation can describe the behaviour of a perfect fluid inside a spherical
object. In general relativity, the source for the gravitational field is the energy
momentum tensor. A perfect fluid can be completely characterized by its rest
frame mass density and isotropic pressure. It has no shear stresses, viscosity,
nor heat conduction.

The general form of the energy momentum tensor T for a perfect fluid space-
time is [10]

T (X,Y ) = pg(X,Y ) + (σ + p)η(X)η(Y )(1.1)

for any smooth vector fields X and Y , where p is the isotropic pressure, σ is
the energy density, g is the metric tensor of Minkowski’s spacetime, η is the
dual 1-form of the velocity vector ξ of the fluid and g(ξ, ξ) = −1. If σ = −p,
that is, T = −σg, then the energy momentum tensor is Lorentz invariant and
the medium is vacuum. If σ = 3p, then the medium is a radiation fluid.
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The field equation governing the perfect fluid motion is Einstein’s gravita-
tional equation [10] given by

kT (X,Y ) = S(X,Y ) + (λ− r

2
)g(X,Y )(1.2)

for any smooth vector fields X and Y , where k is the gravitational constant, λ
is the cosmological constant, S is the Ricci tensor and r is the scalar curvature
of g.

From (1.1) and (1.2), we obtain

S(X,Y ) = −(λ− r

2
− kp)g(X,Y ) + k(σ + p)η(X)η(Y ).(1.3)

If the Ricci tensor S of a manifold is a functional combination of g and η ⊗ η,
then the manifold is called quasi-Einstein [6]. Quasi-Einstein manifolds arose
during the study of exact solutions of Einstein’s field equations. Robertson-
Walker spacetime are the examples of quasi-Einstein manifolds. In general
relativity, quasi-Einstein manifolds can be taken as a model of the perfect fluid
spacetime [7].

The Ricci-Bourguinon flow [5] is a generalization of the Ricci flow which is
defined as follows:

∂g

∂t
= −2(S − ρrg), g(0) = g0,

where S is the Ricci tensor, r is the scalar curvature of g and ρ is a real non-zero
constant. A Ricci ρ-soliton is a self similar solution to the Ricci-Bourguinon
flow. In fact, the data (g, V, µ) on a pseudo-Riemannian manifold of dimension
n ≥ 3 is said to be a Ricci ρ-soliton if

(LV g)(X,Y ) + 2S(X,Y ) + 2(µ+ ρr)g(X,Y ) = 0,(1.4)

where LV denotes the Lie derivative operator along V and µ is an arbitrary
constant. A Ricci ρ-soliton is called expanding if µ > 0, steady if µ = 0 and
shrinking if µ < 0.

Perfect fluid spacetime are extensively studied in many purpose of view.
Here we would like to mention some recent studies. In 2019, Venkatesha and
Kumara [15] studied Ricci solitons in a perfect fluid spacetime with a torse-
forming vector field. In the same year, Siddiqi [11] studied Ricci ρ-soliton
in a dust fluid and viscous fluid spacetime. In [12], the notion of conformal
Ricci solitons in a perfect fluid spacetime were extensively studied. In 2020,
Blaga [3, 4] studied Miao-Tam equation and η-Ricci soliton in a perfect fluid
spacetime. For more studies, we refer the reader to go through the references
[1, 2, 7–9,13] and references therein.

2. Perfect fluid spacetime

Let (M4, g) be a general relativistic perfect fluid spacetime satisfying (1.3).
Consider {ei}1≤i≤4 an orthonormal frame field; that is, g(ei, ei) = εijδij for
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i, j ∈ {1, 2, 3, 4} with ε11 = −1, εii = 1 for i ∈ {2, 3, 4} and εij = 0 for i 6= j;

i, j ∈ {1, 2, 3, 4}. Let ξ =
∑4
i=1 ξ

iei. Then

−1 = g(ξ, ξ) =

4∑
i=1

εii(ξ
i)2

and

η(ei) = g(ei, ξ) =

4∑
j=1

ξig(ei, ej) = εiiξ
i.

Now, contracting (1.3) and considering g(ξ, ξ) = −1, we obtain

r = 4λ+ k(σ − 3p).(2.1)

Substituting (2.1) in (1.3), we obtain

S(X,Y ) = (λ+
1

2
k(σ − p))g(X,Y ) + k(σ + p)η(X)η(Y ).(2.2)

Since g(ξ, ξ) = −1, then ∇g = 0 implies

g(∇Xξ, ξ) = 0.(2.3)

Now, if ξ = Df for some smooth function f on M4, where D is the gradient
operator, then from (2.3), we have g(∇ξξ,X) = 0 for any smooth vector field
X and this implies ∇ξξ = 0. Therefore, we can state the following:

Proposition 2.1. Let (M4, g) be a general relativistic perfect fluid spacetime.
If the velocity vector ξ of the fluid is a gradient vector field, then the integral
curves of ξ are geodesics.

Theorem 2.2 (Blaga, Prop. 2.2, [3]). Let (M4, g) be a general relativistic
perfect fluid spacetime satisfying (2.2) with p and σ constant:

(1) If S is Ricci symmetric, then σ = −p or ∇ξ = 0.
(2) If S is (weakly) pseudo-Ricci symmetric, then p = 2λ

3k −
σ
3 . In this case,

ξ is a torse-forming (in particular, irrotational and geodesic) vector
field and η is a closed (and Codazzi) 1-form.

It is known that locally symmetricness (∇R = 0) implies Ricci symmetric-
ness (∇S = 0) but the converse is not true in general. However the converse is
true in dimension three. Also weakly symmetricness implies (weakly) pseudo-
Ricci symmetricness ([14]). Therefore we can state the following:

Corollary 2.3. Let (M4, g) be a general relativistic perfect fluid spacetime
satisfying (2.2) with p and σ constant:

(1) If S is locally symmetric, then σ = −p or ∇ξ = 0.
(2) If S is weakly symmetric, then p = 2λ

3k −
σ
3 . In this case, ξ is a torse-

forming (in particular, irrotational and geodesic) vector field and η is
a closed (and Codazzi) 1-form.
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3. Ricci ρ-soliton

In this section, we study the data (g, ξ, µ) as a Ricci ρ-soliton in a perfect
fluid spacetime (M4, g) whose velocity vector ξ acts as a potential vector of the
soliton.

Considering V = ξ in (1.4), we obtain

(3.1) (Lξg)(X,Y ) + 2S(X,Y ) + 2(µ+ ρr)g(X,Y ) = 0.

Now,

(3.2) (Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ).
Substituting (3.2) in (3.1), we have

(3.3) S(X,Y ) = −(µ+ ρr)g(X,Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)].

Contracting (3.3), we get

(3.4) r = −4(µ+ ρr)− div(ξ),

where ‘div’ stands for divergence. Now, equating (2.2) and (3.3), we have

(λ+
1

2
k(σ − p))g(X,Y ) + k(σ + p)η(X)η(Y )(3.5)

= − (µ+ ρr)g(X,Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)].

Consider {ei}1≤i≤4 an orthonormal frame field and let ξ =
∑4
i=1 ξ

iei. We have

seen that
∑4
i=1 εii(ξ

i)2 = −1 and η(ei) = εiiξ
i. Multiplying (3.5) by εii and

summing over i for X = Y = ei, we obtain

4µ+ 4ρr = −4λ− k(σ − 3p)− div(ξ).(3.6)

Now, substituting X = Y = ξ in (3.5), we get

µ+ ρr = −λ+
1

2
k(σ + 3p).(3.7)

The equations (3.6) and (3.7) together implies

div(ξ) = −3k(σ + p).(3.8)

Substituting the value of r from (2.1) in (3.7), we obtain

µ = −λ(1 + 4ρ) +
1

2
k[(σ + 3p)− 2ρ(σ − 3p)].(3.9)

In view of (3.8), we can state the following:

Theorem 3.1. Let (M4, g) be a general relativistic perfect fluid spacetime. If
(g, ξ, µ) represents a Ricci ρ-soliton with ξ = Df for some smooth function f
on M4, then the Poisson equation satisfied by f is

∆f = −3k(σ + p).

From (3.9), we can state the following:
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Theorem 3.2. Let (M4, g) be a general relativistic perfect fluid spacetime. If
(g, ξ, µ) represents a Ricci ρ-soliton in (M4, g), then the soliton is

(1) expanding if 1
2k[(σ + 3p)− 2ρ(σ − 3p)] > λ(1 + 4ρ).

(2) steady if 1
2k[(σ + 3p)− 2ρ(σ − 3p)] = λ(1 + 4ρ).

(3) shrinking if 1
2k[(σ + 3p)− 2ρ(σ − 3p)] < λ(1 + 4ρ).

If σ = −p, then the medium is vacuum. Therefore, from (3.8), we write the
following:

Theorem 3.3. If (g, ξ, µ) represents a Ricci ρ-soliton in the vacuum, then the
velocity vector ξ is harmonic.

Remark 3.4. If ρ = 0, then (3.1) reduces to

(Lξg)(X,Y ) + 2S(X,Y ) + 2µg(X,Y ) = 0.

This is the Ricci soliton equation. Now, from (3.9), we have

µ = −λ+
1

2
k(σ + 3p).

Therefore, the Ricci soliton is steady if p = 2λ
3k −

σ
3 ; expanding if p > 2λ

3k −
σ
3

and shrinking if p < 2λ
3k −

σ
3 (see also [3]).

Remark 3.5. If we take radiation fluid, that is, σ = 3p; then from (3.9),

µ = −λ(1 + 4ρ) + kσ.

So, the Ricci ρ-soliton in a radiation fluid is steady if λ(1+4ρ) = kσ; expanding
if λ(1 + 4ρ) < kσ and shrinking if λ(1 + 4ρ) > kσ.

Remark 3.6. In a general relativistic perfect fluid spacetime, if the vector field
ξ is torse-forming with

∇Xξ = s[X + η(X)ξ]

for any smooth vector field X and s a non-zero real number, then

div(ξ) = 3s.(3.10)

Therefore, from (3.8) and (3.10), we get

s = −k(σ + p).

So, in this case, the existence of a Ricci ρ-soliton from Plebański energy condi-
tions σ ≥ 0 and −σ ≤ p ≤ σ for perfect fluids implies −2kσ ≤ s < 0 (precisely,
s = −k(σ + p)).

Remark 3.7. If the vector field ξ is conformal Killing, that is, Lξg = sg with
a non-zero real number s, then the existence of a Ricci ρ-soliton implies the
vacuum case. Indeed, equation (3.5) can be written as

(λ+
1

2
k(σ − p))g(X,Y ) + k(σ + p)η(X)η(Y )

= − (µ+ ρr)g(X,Y )− 1

2
(Lξg)(X,Y ),
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which implies

(λ+
1

2
k(σ − p))g(X,Y ) + k(σ + p)η(X)η(Y )(3.11)

= − (µ+ ρr)g(X,Y )− 1

2
sg(X,Y ).

Now, contracting X and Y in (3.11), we obtain

4[λ+
1

2
k(σ − p)]− k(σ + p) = −4(µ+ ρr +

1

2
s).(3.12)

Again, putting X = Y = ξ in (3.11), we get

−[λ+
1

2
k(σ − p)] + k(σ + p) = (µ+ ρr +

1

2
s).(3.13)

Solving (3.12) and (3.13), we obtain k(σ + p) = 0. As k 6= 0, σ = −p and this
describes the vacuum case.

4. η-Ricci ρ-soliton

In this section, we consider a slightly more general notion of the Ricci ρ-
soliton, called η-Ricci ρ-soliton, which can be obtained by adding certain mul-
tiple of the (0, 2)-tensor field η ⊗ η in (1.4). Therefore, an η-Ricci ρ-soliton is
given by

(4.1) (LV g)(X,Y ) + 2S(X,Y ) + 2(µ+ ρr)g(X,Y ) + 2ωη(X)η(Y ) = 0,

where µ and ω are real constants. An η-Ricci ρ-soliton is called expanding if
µ > 0, steady if µ = 0 and shrinking if µ < 0.

In this section, we study the data an η-Ricci ρ-soliton in a perfect fluid
spacetime (M4, g) whose velocity vector ξ acts as a potential vector of the
soliton. For this, taking V = ξ in (4.1), we get

(4.2) S(X,Y ) = −(µ+ρr)g(X,Y )−ωη(X)η(Y )− 1

2
[g(∇Xξ, Y )+g(X,∇Y ξ)].

The equations (2.2) and (4.2) together implies

(λ+
1

2
k(σ − p))g(X,Y ) + k(σ + p)η(X)η(Y )(4.3)

= − (µ+ ρr)g(X,Y )− ωη(X)η(Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)].

Contracting X and Y in the foregoing equation, we obtain

(4.4) 4(λ+
1

2
k(σ − p))− k(σ + p) = −4(µ+ ρr) + ω − div(ξ).

Putting X = Y = ξ in (4.3) yields

−(λ+
1

2
k(σ − p)) + k(σ + p) = (µ+ ρr)− ω.(4.5)
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The equations (4.4) and (4.5) together implies

ω = −k(σ + p)− 1

3
div(ξ).(4.6)

Substituting the value of ω from (4.6) in (4.5), we infer that

µ+ ρr = −(λ+
1

2
k(σ − p))− 1

3
div(ξ).

Now, putting the value of r from (2.1) in the foregoing equation yields

µ = −(1 + 4ρ)λ− 1

2
k[(σ − p) + 2ρ(σ − 3p)]− 1

3
div(ξ).(4.7)

Therefore, we are in a position to state the following:

Theorem 4.1. Let (M4, g) be a general relativistic perfect fluid spacetime. If
(g, ξ, µ, ω) represents an η-Ricci ρ-soliton in (M4, g), then

µ = −(1 + 4ρ)λ− 1

2
k[(σ − p) + 2ρ(σ − 3p)]− 1

3
div(ξ),

ω = −k(σ + p)− 1

3
div(ξ).

If we consider ξ as a gradient vector field, then in view of (4.6), we have the
following:

Theorem 4.2. Let (M4, g) be a general relativistic perfect fluid spacetime ad-
mitting an η-Ricci ρ-soliton (g, ξ, µ, ω), where ξ = Df for some smooth function
f on M4. Then f satisfies the Poisson equation

∆f = −3[ω + k(σ + p)].

Example 4.3. An η-Ricci ρ-soliton (g, ξ, µ, ω) in a radiation fluid is given by

µ = −(1 + 4ρ)λ− kp− 1

3
div(ξ),

ω = −4kp− 1

3
div(ξ).
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