ON SPECIAL FINSLER SPACES WITH COMMON GEODESICS

Byung-Doo Kim* and Ha-Yong Park

ABSTRACT. In the present paper, we investigate a problem in a symmetric Finsler space, which is a special space. First we prove that if a symmetric space remains to be a symmetric one under the \mathcal{Z} -projective change, then the space is of zero curvature. Further we will study \mathcal{W} -recurrent space and \mathcal{D} -recurrent space under the projective change.

0. Introduction

If any geodesic on F^n is also a geodesic on \bar{F}^n and the inverse is true, the change $\sigma: L \to \bar{L}$ of the metric is called *projective*. It is known that the Douglas tensor and the Weyl tensor are invariant under any projective change. Moreover, h-curvature tensor in the Berwald connection $B\Gamma$ is also invariant under a special projective change (\mathcal{Z} -projective change). In the paper [4], M. Fukui and T. Yamada dealt with it and had some results. A Finsler space of zero curvature remains a space of zero curvature by the \mathcal{Z} -projective change which is characterized as $Q_i = 0$.

The purpose of the present paper is to consider the condition that a symmetric space remains to be a symmetric space. Especially, in section 4, we treat a W-recurrent space and a \mathcal{D} -recurrent space.

1. Berwald connection

Let $F^n = (M^n, L)$ be an *n*-dimensional Finsler space, where M^n is a connected differential manifold of dimension n and L(x, y) is the fun-

Received December 7, 1999. Revised February 17, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 53B40.

Key words and phrases: projective change, symmetric space, Douglas tensor.

^{*} This paper was supported by the Kyungil University Research Grants in 1999.

damental function defined on the manifold T(M)/0 of non-zero tangent vectors. We assume that L is positive and the fundamental metric tensor $g_{ij} = (1/2)\dot{\partial}_j\dot{\partial}_i L^2$ is positive definite, where $\dot{\partial}_i = \partial/\partial y^i$.

A geodesic on F^n is given by the differential equation

$$d^2x^i/ds^2 + 2G^i(x, dx/ds) = 0,$$

where s is the arc-length of the curve. In the present paper, we are mainly concerned with the Berwald connection $B\Gamma = (G_j{}^i{}_k, G^i{}_j, 0)$, which is defined as: $G^i{}_j = \dot{\partial}_j G^i$, $G_j{}^i{}_k = \dot{\partial}_k G^i{}_j$. For a Finsler tensor field X^i , the h-covariant derivative with respect to $B\Gamma$ is given by

(1.1)
$$X^{h}_{;i} = \partial_{i}X^{h} - G^{r}_{i}(\dot{\partial}_{r}X^{h}) + X^{r}G_{r}^{h}_{i},$$

where $\partial_i = \partial/\partial x^i$.

For $B\Gamma$ we consider the torsion and the curvature. According to the theory of Finsler connection ([1],[5]), the h(v)-torsion R^1 is the same with that of Cartan connection $C\Gamma$, because $B\Gamma$ and $C\Gamma$ have the common spray connection $(G^i{}_j)$. And the h-curvature tensor R^2 and the hv-curvature tensor P^2 are usually written as $H = (H_h{}^i{}_{jk})$ and $G = (G_h{}^i{}_{jk})$ respectively. These tensors are written as

$$H_{j}{}^{i}{}_{k} = \mathcal{U}_{(jk)} \{ \partial_{k} G^{i}{}_{j} - G_{j}{}^{i}{}_{r} G^{r}{}_{k} \},$$

$$(1.2) \qquad H_{h}{}^{i}{}_{jk} = \mathcal{U}_{(jk)} \{ \partial_{k} G_{h}{}^{i}{}_{j} - G^{r}{}_{k} (\dot{\partial}_{r} G_{h}{}^{i}{}_{j}) + G_{h}{}^{r}{}_{j} G_{r}{}^{i}{}_{k} \},$$

$$G_{h}{}^{i}{}_{jk} = \dot{\partial}_{h} G_{j}{}^{i}{}_{k},$$

where $\mathcal{U}_{(jk)}$ means the interchange of indices j, k and subtraction.

Throughout the following the index 0 denotes the transvection by y^i , for example, $y^i F^h{}_i = F^h{}_0$. For later use, we introduce the following relations ([8]):

(1.3)
$$(a) H_0{}^{i}{}_{jk} = H_j{}^{i}{}_{k}, (b) H_0{}^{i}{}_{k} = H^{i}{}_{k}, (c) H_j{}^{i}{}_{k} = -H_k{}^{i}{}_{j},$$

$$(d) H_j{}^{i}{}_{k} = (1/3) \mathcal{U}_{(jk)} \{ \dot{\partial}_j H^{i}{}_{k} \}, (e) H_h{}^{i}{}_{jk} = \dot{\partial}_h H_j{}^{i}{}_{k}.$$

2. Projective changes of metrics

We consider two Finsler spaces $F^n=(M^n,L)$ and $\bar{F}^n=(M^n,\bar{L})$ on a common underlying manifold M^n . Let the change $\sigma:L\to\bar{L}$ be projective. It is well known that σ is projective if and only if there exists a positively homogeneous degree 1 Finsler scalar field p(x,y) on M^n , satisfying

(2.1)
$$\bar{G}^{i}(x,y) = G^{i}(x,y) + p(x,y)y^{i}, \ p \neq 0.$$

This p(x, y) is called the *projective factor* of the projective change under consideration.

We shall show how the torsion and curvature tensors are changed by a projective change. Let $B\bar{\Gamma} = (\bar{G}^i_{jk}, \bar{G}^i{}_j, 0)$ be the Berwald connection on the space $\bar{F}^n = (M^n, \bar{L})$, obtained from $F^n = (M^n, L)$ by a projective change σ . Then, (2.1) immediately gives

(2.2)
$$\bar{G}^{i}{}_{j} = G^{i}{}_{j} + y^{i}p_{j} + \delta^{i}_{j}p, \\ \bar{G}^{i}{}_{k} = G^{i}{}_{k} + y^{i}p_{jk} + \delta^{i}_{j}p_{k} + \delta^{i}_{k}p_{j},$$

where we put $p_i = \dot{\partial}_i p$ and $p_{ij} = \dot{\partial}_j p_i$.

On the other hand, the hv-curvature tensor $\bar{G}_i{}^h{}_{jk}$ and the h-curvature tensor $\bar{H}_k{}^h{}_{ij}$ of $B\bar{\Gamma}$ are given by

(2.3)
$$\bar{G}_{ijk}^{h} = G_{ijk}^{h} + y^{h} p_{ijk} + \mathcal{A}_{(ijk)} \{ \delta_{i}^{h} p_{jk} \},$$

$$(2.4) \bar{H}_k{}^h{}_{ij} = H_k{}^h{}_{ij} + y^h Q_{ij\cdot k} + \delta^h_k Q_{ij} + \mathcal{U}_{(ij)} \{ \delta^h_i Q_{j\cdot k} \},$$

where we put $k = \dot{\partial}_k$, $Q_i = p_{;i} - pp_i$, $Q_{ij} = \mathcal{U}_{(ij)}p_{i;j}$ and $\mathcal{A}_{(ijk)}$ means cyclic permutation of the indices i, j, k and summation.

We have two essential projective invariants, one is the Weyl curvature tensor W and the other is the Douglas tensor D. If $Q_i = 0$, from (2.4) the h-curvature tensor H is also invariant under the projective change. In the paper [7], S. C. Rastogi discussed the properties of the projective factor p(x,y) satisfying the condition $Q_i = 0$. A projective change of a Finsler space of zero curvature is also a Finsler space of zero curvature if and only if the projective factor p satisfies the equation $Q_i = 0$.

DEFINITION 1. ([4]) A projective change σ is called a \mathbb{Z} -projective change if $Q_i = 0$.

S. C. Rastogi ([7]) proved the following.

THEOREM A. If $Q_i = 0$, then the scalar p(x, y) and its derivative satisfy the equations:

(2.5) (a)
$$p_r H_j^{\ r}{}_i = 0$$
, (b) $\mathcal{A}_{(ijk)} \{ p_{rk} H_j^{\ r}{}_i \} = 0$.

3. Symmetric spaces

DEFINITION 2. A Finsler space is called a symmetric space if its h-curvature tensor R^2 satisfies the relation $H_h{}^i{}_{jk;m} = 0$.

Meher's paper ([6]) concerned with the existence of projective motion in a symmetric Finsler space and obtained a relation of the Berwald's scalar curvature. Moreover he discussed a scalar function, which gives rise to the projective motion.

We can see that every Finsler space of zero curvature is a symmetric space. But the converse is not true.

Let $B\bar{\Gamma}$ be the Berwald connection on the space \bar{F}^n obtained from F^n . Then, from (1.1) the covariant derivative of the h-curvature tensor in \bar{F}^n is given by

(3.1)
$$\bar{H}_{h}{}^{i}{}_{jk\bar{;}m} = \partial_{m}\bar{H}_{h}{}^{i}{}_{jk} - \dot{\partial}_{a}\bar{H}_{h}{}^{i}{}_{jk}\bar{G}^{a}{}_{m} + \bar{H}_{h}{}^{a}{}_{jk}\bar{G}_{a}{}^{i}{}_{m} - \bar{H}_{a}{}^{i}{}_{jk}\bar{G}_{h}{}^{a}{}_{m} - \bar{H}_{h}{}^{i}{}_{ak}\bar{G}_{j}{}^{a}{}_{m} - \bar{H}_{h}{}^{i}{}_{ja}\bar{G}_{k}{}^{a}{}_{m},$$

where $(\bar{\cdot})$ denotes the *h*-covariant derivative with respect to $B\bar{\Gamma}$. The *h*-curvature tensor is invariant under the \mathcal{Z} -projective change. Paying attention to (2.2), we get

(3.2)
$$\bar{H}_{h}{}^{i}{}_{jk;m} = H_{h}{}^{i}{}_{jk;m} + \mathcal{A}_{(jkm)} \{ H_{h}{}^{i}{}_{jk} p_m \} - p \dot{\partial}_m H_{h}{}^{i}{}_{jk} + H_{h}{}^{a}{}_{jk} y^{i} p_{am} + H_{h}{}^{a}{}_{jk} \delta_{m}^{i} p_a - H_{j}{}^{i}{}_{k} p_{hm} - H_{m}{}^{i}{}_{jk} p_h - 3H_{h}{}^{i}{}_{jk} p_m + \mathcal{U}_{(jk)} \{ H_{h}{}^{i}{}_{k0} p_{jm} \}.$$

Since p(x,y) and $R^2(x,y)$ are homogeneous function of degree 1 and 0 in y respectively, we find

(3.3)
$$p_0 = p, \ p_{m0} = 0, \ \dot{\partial}_0 H_h{}^i{}_{jk} = 0.$$

We assume that a symmetric space F^n is transformed into another symmetric one \bar{F}^n by the \mathcal{Z} -projective change. And transvecting (3.2) with y^m and y^h , from (1.3), (2.5) and (3.3) we have

(3.4)
$$3pH_j^i{}_k + \mathcal{U}_{(kj)}\{H^i{}_k p_j\} = 0.$$

Further, transvecting this with y^j , we obtain $pH^i{}_k = 0$, which implies $H_h{}^i{}_{jk} = 0$ by virtue of (1.3).

Summarizing up the above, we have:

THEOREM 3.1. If a symmetric space remains to be a symmetric one by the \mathcal{Z} -projective change and the projective change is not trivial (i.e. $p \neq 0$), then the space is of zero curvature.

4. Recurrent spaces

The Weyl projective deviation tensor W ([8]) is given by

(4.1)
$$W^{i}_{k} = H^{i}_{k} - H\delta^{i}_{k} - y^{i}(\dot{\partial}_{r}H^{r}_{i} - \dot{\partial}_{k}H)/(n+1),$$

which is invariant under the projective change.

In the previous paper ([2]), S. Bacso defined an A-recurrent Finsler space, that is, for a tensor $A^{i}_{k} = H^{i}_{k} - Hh^{i}_{k}$,

(4.2)
$$A^{i}_{k:0} = \psi(x, y)A^{i}_{k},$$

where $\psi(x, y)$ is positively homogeneous function of degree 1 in y and $h^i{}_k$ is an angular metric tensor. Similarly we introduce W-recurrent space as following.

DEFINITION 4.1. A Finsler space F^n is called W-recurrent one if the deviation tensor W satisfies the following condition

(4.3)
$$W^{i}_{k;0} = \psi(x,y)W^{i}_{k},$$

where $\psi(x,y)$ is a positively homogeneous function of degree 1 in y.

Let's consider the projective change $\sigma: L \to \bar{L}$, where F^n is an arbitrary Finsler space but \bar{F}^n is a W-recurrent Finsler space, that is,

(4.4)
$$\bar{W}^{i}_{k,0} = \bar{\psi}(x,y)\bar{W}^{i}_{k,0}$$

where $(\bar{\cdot})$ denotes the h-covariant derivative in $B\bar{\Gamma}$.

In $B\bar{\Gamma}$ of \bar{F}^n , from (1.1) and (2.2) we have

(4.5)
$$W^{i}_{k,m} = W^{i}_{k,m} - p\dot{\partial}_{m}W^{i}_{k} - 2W^{i}_{k}p_{m} + W^{i}_{m}p_{k} + W^{r}_{k}p_{rm}y^{i} + W^{r}_{k}p_{r}\delta^{i}_{m}.$$

Here is used the fact that the deviation tensor is invariant under the projective change.

Let's assume that the projective factor satisfies a condition $W^r{}_k p_r = 0$, which we denote by \mathcal{W} -condition. Since $W^i{}_k$ and p are positively homogeneous functions of degree 2 and 1 in y respectively, we get $\dot{\partial}_0 W^i{}_k = 2W^i{}_k$, $W^i{}_0 = 0$. Transvecting (4.5) with y^m and using (4.4), we obtain

(4.6)
$$W^{i}_{k;0} = (\bar{\psi} + 4p)W^{i}_{k}.$$

Putting $\psi = \bar{\psi} + 4p$, we find that F^n is also W-recurrent.

Conversely, if \bar{F}^n and F^n are W-recurrent with the function $\psi = \bar{\psi} + 4p$, then from (4.5) we can find that projective factor satisfies the W-condition. Thus we have:

THEOREM 4.1. If a Finsler space F^n can be transformed into a W-recurrent space \bar{F}^n with the function $\bar{\psi}$ by the projective change, then F^n is also W-recurrent one with the function $\psi = \bar{\psi} + 4p$ if and only if the projective factor p satisfies W-condition.

Next, we introduce the Douglas tensor ([1]):

(4.7)
$$D_{h^{i}jk} = G_{h^{i}jk} - (G_{hj\cdot k}y^{i} - \mathcal{A}_{(hjk)}\{G_{jk}\delta_{h}^{i}\})/(n+1),$$

where $G_{jk} = G_j^{\ r}_{kr}$. This tensor is invariant under the projective change. On the other hand, a Finsler space is called a Berwald space, if the connection coefficients $G_j^{\ i}_k$ of $B\Gamma$ are function of position x alone, in any coordinate system. Therefore, from (4.7) if the hv-curvature tensor G vanishes, then the Douglas tensor vanishes identically. An n-dimensional Finsler space F^n is called a Douglas space ([3]) if the Douglas tensor vanishes identically. This fact has substantial importance in biology

([1]). Therefore we can state the following.

REMARK. If a Finsler space is projective to a Berwald space, then the space is the Douglas space.

Next, similar to the W-recurrent case, we can define the \mathcal{D} -recurrent space.

DEFINITION 4.2. A Finsler space F^n is called \mathcal{D} -recurrent one if the Douglas tensor satisfies the following condition

$$(4.8) D_h{}^i{}_{jk;0} = \varphi(x,y)D_h{}^i{}_{jk},$$

where $\varphi(x,y)$ is a positively homogeneous function of degree 1 in y.

Since the Douglas tensor is positively homogeneous function of degree -1 in y, we find $\partial_0 D_h{}^i{}_{ik} = -1$. And it satisfies the identities ([8]):

(4.9) (a)
$$D_0^i{}_{jk} = D_h^i{}_{0k} = D_h^i{}_{j0} = 0$$
, (b) $D_r^r{}_{jk} = 0$.

We are concerned with the projective change $\sigma: L \to \bar{L}$, where F^n is arbitrary but \bar{F}^n is \mathcal{D} -recurrent. From (1.1) and (2.2) we get

(4.10)
$$D_{h}{}^{i}{}_{jk;m} = D_{h}{}^{i}{}_{jk;m} - p \ \dot{\partial}_{m} D_{h}{}^{i}{}_{jk} + D_{h}{}^{r}{}_{jk} p_{rm} y^{i} + D_{h}{}^{r}{}_{jk} p_{r} \delta^{i}_{m} - \mathcal{A}_{(hjm)} D_{h}{}^{i}{}_{jk} p_{m} - D_{h}{}^{i}{}_{jm} p_{k}.$$

Suppose that the projective factor satisfies a condition $D_h^r{}_{jk}p_r = 0$, which we denote by \mathcal{D} -condition. Transvecting (4.10) with y^m and taking account of $\partial_0 D_h^i{}_{jk} = -1$, we obtain

$$(4.11) D_{h}{}^{i}{}_{ik:0} = \bar{\varphi} D_{h}{}^{i}{}_{ik}.$$

Putting $\varphi = \bar{\varphi}$, we find that F^n is also \mathcal{D} -recurrent.

Conversely, if \bar{F}^n and F^n are \mathcal{D} -recurrent spaces with the function $\varphi = \bar{\varphi}$, then from (4.10) we get $D_h{}^r{}_{jk}p_r = 0$. Thus we have:

THEOREM 4.2. If a Finsler space F^n can be transformed into a \mathcal{D} recurrent space \bar{F}^n with the function $\bar{\varphi}$ by the projective change, then F^n must be \mathcal{D} -recurrent one with the function $\varphi = \bar{\varphi}$ if and only if the
projective factor p satisfies \mathcal{D} -condition.

References

- [1] P. L. Antonelli, R. Ingarden and M. Matsumoto, The theory of sprays and Finsler spaces with applications in physics and biology, Kluwer Acad. publ., Netherlands, 1993.
- [2] S. Bacso, A note on geodesic mappings of Finsler spaces, Coll. Math. Soci. Janos Bolyal 46 (Hungary) (1984), 131-136.
- [3] S. Bacso and M. Matsumoto, On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), 385-406.
- [4] M. Fukui and T. Yamada, On projective mapping in Finsler geometry, Tensor, N.S. 35 (1981), 216-222.
- [5] M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha, 1986.
- [6] F. M. Meher, Projective motion in a symmetric Finsler space, Tensor, N.S. 23 (1972), 275-278.
- [7] S. C. Rastogi, On projective mapping in a Finsler space, Tensor, N.S. 42 (1985), 121-125.
- [8] H. Rund, The differential geometry of Finsier spaces, Springer-Verlag, 1959.

Department of Mathematics Kyungil University Kyungsanshi, Kyungbook 712–701, Korea *E-mail*: bdkim@bear.kyungil.ac.kr hypark@bear.kyungil.ac.kr