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ON SPECIAL FINSLER SPACES
WITH COMMON GEODESICS

ByYuNnGg-Doo KiM* AND HA-YONG PARK

ABSTRACT. In the present paper, we investigate a problem in a sym-
metric Finsler space, which is a special space. First we prove that
if a symmetric space remains to be a symmetric one under the Z-
projective change, then the space is of zero curvature. Further we
will study W-recurrent space and D-recurrent space under the pro-
jective change.

0. Introduction

If any geodesic on F™ is also a geodesic on F™ and the inverse is
true, the change ¢ : L — L of the metric is called projective. It is
known that the Douglas tensor and the Weyl tensor are invariant under
any projective change. Moreover, h-curvature tensor in the Berwald
connection BT is also invariant under a special projective change (2-
projective change). In the paper [4], M. Fukui and T. Yamada dealt
with it and had some results. A Finsler space of zero curvature remains a
space of zero curvature by the Z-projective change which is characterized
as QZ =0.

The purpose of the present paper is to consider the condition that a
symmetric space remains to be a symmetric space. Especially, in section
4, we treat a W-recurrent space and a D-recurrent space.

1. Berwald connection

Let F* = (M™, L) be an n-dimensional Finsler space, where M™ is
a connected differential manifold of dimension n and L(z,y) is the fun-
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damental function defined on the manifold T'(M)/0 of non-zero tangent
vectors. We assume that L is positive and the fundamental metric tensor
9i; = (1/2)0;0;L? is positive definite, where 8; = 8/8y".

A geodesic on F™ is given by the differential equation

d?zt/ds? + 2G*(x, dz/ds) = 0,

where s is the arc-length of the curve. In the present paper, we are mainly
concerned with the Berwald connection BI’ = (Gjik,l G*;,0), which is
defined as: G'; = 0;G*, G} = 9xG";. For a Finsler tensor field X, the
h-covariant derivative with respect to BI is given by

(1.1) Xh; =8,X" - G"i(8, X") + X"G,",

where 8; = §/8z".

For BT' we consider the torsion and the curvature. According to the
theory of Finsler connection ([1],(5]), the h(v)-torsion R! is the same with
that of Cartan connection CT', because BT' and CT have the common
spray connection (G';). And the h-curvature tensor R? and the hv-

curvature tensor P? are usually written as H = (Hp';z) and G = (Gr';1)
respectively. These tensors are written as

Hj'x = Uiy {0kG'j — GGy},
(1.2) Hp'ji = Ury{0kGr'; — GTr(0-G1';) + Gr™ Gk},
Gr'ik = Gy,

where Uiy means the interchange of indices j, k and subtraction.

Throughout the following the index 0 denotes the transvection by y¢,
for example, y'F*; = F";. For later use, we introduce the following
relations ({8]):

(a) Ho'jx = Hy'k, (b) Ho'x = H'x, (¢) Hj'x = —Hy'j,

(1-3) (d) Hjik = (1/3) U(jk){ajHik}, (e) Hhijk = 3thik.
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2. Projective changes of metrics

We consider two Finsler spaces F* == (M™, L) and F* = (M™, L)
on a common underlying manifold M™. Let the change ¢ : L — L be
projective. It is well known that o is projective if and only if there exists
a positively homogeneous degree 1 Finsler scalar field p(z,y) on M™,
satisfying

(2.1) G'(z,y) = G*(z,y) + p(z,y)y’, p# 0.

This p(z, y) is called the projective factor of the projective change under
consideration.

We shall show how the torsion and curvature tensors are changed by a
projective change. Let BT = (G‘;k, G;,0) be the Berwald connection on
the space F™ = (M", L), obtained from F™ = (M", L) by a projective
change o. Then, (2.1) immediately gives

i _ v i, 1
(2.2) _Gi” G y TP O, .
Gi't = Gk + ¥'pjk + 8ok + 01pj,
where we put p; = 'ip and p;; = 'jp,-.

On the other hand, the hv-curvature tensor G;" j; and the h-curvature
tensor Hy";; of BT are given by

(2.3) Git ik = G ji + yh g + Ay (80pin},

(2.4) Hil; = He" 4+ 4 Qi + 61 Qi + Ui {68Qix},

where we put -k = 0k, Qi = p;i — ppi, Qi = Uy;)pi;; and A(ijk) means
cyclic permutation of the indices i, j, k and summation.

We have two essential projective invariants, one is the Weyl curvature
tensor W and the other is the Douglas tensor D. If Q; = 0, from (2.4)
the h-curvature tensor H is also invariant under the projective change.
In the paper [7], S. C. Rastogi discussed the properties of the projective
factor p(z,y) satisfying the condition Q; = 0. A projective change of a
Finsler space of zero curvature is also a Finsler space of zero curvature
if and only if the projective factor p satisfies the equation Q; = 0.
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DEFINITION 1. ([4]) A projective change o is called a Z-projective
change if Q; = 0.

S. C. Rastogi ([7]) proved the following.

THEOREM A. If Q; = 0, then the scalar p(z,y) and its derivative
satisfy the equations:

(2.5) (a) p-H;"s = 0, (b) Agjry{praH; i} =0.

3. Symmetric spaces

DEFINITION 2. A Finsler space is called a symmetric space if its
h-curvature tensor R? satisfies the relation Hp* jkzm = 0.

Meher’s paper ([6]) concerned with the existence of projective motion
in a symmetric Finsler space and obtained a relation of the Berwald’s
scalar curvature. Moreover he discussed a scalar function, which gives
rise to the projective motion.

We can see that every Finsler space of zero curvature is a symmetric
space. But the converse is not true.

Let BT be the Berwald connection on the space F™ obtained from
F™. Then, from (1.1) the covariant derivative of the h-curvature tensor
in F™ is given by

Hy jiom =0mHp' i — 0 Hp' j6G%m + Hr®jkGa'm

(31) 7 i, . a (7.1 . /y.a (7. t. /Y a
- ajkGh m — Hp aij m — Hp jaGk my

where () denotes the h-covariant derivative with respect to BI'. The
h-curvature tensor is invariant under the Z-projective change. Paying
attention to (2.2), we get

By skom =Hp jeom + AGem) {HR jkPm } — PO Hp' i
(3.2) + Hp® 1y Pam + Hr®jk0%pa — H;'kPhm
— Hp' jkph — 3HR jkpm + Uiy {Hr koPjm }-
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Since p(x,y) and R*(z,y) are homogeneous function of degree 1 and 0
in y respectively, we find

(3.3) Po = Py Pmo =0, SoHps, =0.

We assume that a symmetric space F™ is transformed into another sym-
metric one F™ by the Z-projective change. And transvecting (3.2) with
y™ and y", from (1.3), (2.5) and (3.3) we have

(3.4) 3ijik +u(kj){Hikpj} =0.

Further, transvecting this with y7, we obtain pH?; = 0, which implies
Hp'jk = 0 by virtue of (1.3).
Summarizing up the above, we have:

THEOREM 3.1. If a symmetric space remains to be a symmetric one
by the Z-projective change and the projective change is not trivial (i.e.
p # 0), then the space is of zero curvature.

4. Recurrent spaces

The Weyl projective deviation tensor W ([8]) is given by
(4.1) Wi, = H'y, — H:, — 4 (8, H™, — O H)/(n + 1),

which is invariant under the projective change.
In the previous paper ([2]), S. Bacso defined an A-recurrent Finsler
space, that is, for a tensor A%y = H'; — K hi,

(4.2) Al = ¢(z,y) A%,

where ¥(z, y) is positively homogeneous function of degree 1 in y and h
is an angular metric tensor. Similarly we introduce W-recurrent space
as following.

DEFINITION 4.1. A Finsler space F™ is called W-recurrent one if the
deviation tensor W satisfies the following condition

(4.3) Wiko = ¥z, y)W'k,
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where ¥(z,y) is a positively homogeneous function of degree 1 in y.

Let’s consider the projective change o : L — L, where F" is an
arbitrary Finsler space but F™ is a W-recurrent Finsler space, that is,

(4.4) Wi = ¥(z, y) W',

where () denotes the h-covariant derivative in BT.
In BT of F", from (1.1) and (2.2) we have

Wikfm =Wik;m - pamwik - ZWikpm + Wimpk
+ erprmyi + er:pré;in-
Here is used the fact that the deviation tensor is invariant under the
projective change.
Let’s assume that the projective factor satisfies a condition W"yp, =
0, which we denote by W-condition. Since W*; and p are positively ho-

mogeneous functions of degree 2 and 1 in y respectively, we get W? =
oW, Wiy = 0. Transvecting (4.5) with y™ and using (4.4), we obtain

(4.6) Wiko = (¥ + 4p)W'.
Putting ¢ = ¥ + 4p, we find that F™ is also W-recurrent.
Conversely, if F™ and F™ are W-recurrent with the function ¢ =

¥ + 4p, then from (4.5) we can find that projective factor satisfies the
W-condition. Thus we have:

(4.5)

THEOREM 4.1. If a Finsler space F™ can be transformed into a W-
recurrent space F™ with the function 4 by the projective change, then
F™ is also W-recurrent one with the function v = 1 + 4p if and only if
the projective factor p satisfies YW-condition.

Next, we introduce the Douglas tensor ([1}):

(47)  Dp'jk = Gr'jk — (Grjry® — Apjry{Gixdh})/(n + 1),
where G, = G;" . This tensor is invariant under the projective change.

On the other hand, a Finsler space is called a Berwald space, if the
connection coefficients G;°, of BT are function of position x alone, in any
coordinate system. Therefore, from (4.7) if the hv-curvature tensor G
vanishes, then the Douglas tensor vanishes identically. An n-dimensional
Finsler space F™ is called a Douglas space ([3]) if the Douglas tensor
vanishes identically. This fact has substantial importance in biology
([1]). Therefore we can state the following.
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REMARK. If a Finsler space is projective to a Berwald space, then
the space is the Douglas space.

Next, similar to the W-recurrent case, we can define the D-recurrent
space.

DEFINITION 4.2. A Finsler space F™ is called D-recurrent one if the
Douglas tensor satisfies the following condition

(4.8) Dp*jk0 = @(e,y) Dr' s,

where ¢(z,y) is a positively homogeneous function of degree 1 in y.

Since the Douglas tensor is positively homogeneous function of degree
-1in y, we find oDy’ jx = —1. And it sarisfies the identities ([8]):

(4.9) (a) Do*;r. = Di'ox = Di*jo =0, (b) D," 5 =0.

We are concerned with the projective change o : L — L, where F" is
arbitrary but F™ is D-recurrent. From (1.1) and (2.2) we get

(4 10) Dhijk?m =Dhijk;m -P a.mDhijk + Dhrjkprmyi
+ Dhrjkpr‘sfn - A(hjm)Dhijkpm - Dhijmpk-

Suppose that the projective factor satisfies a condition Dy” jxpr = 0,
which we denote by D-condition. Transvecting (4.10) with y™ and taking
account of Jg Dy’ jx = —1, we obtain

(4.11) Di%jk0 = ¢D1 ji.

Putting ¢ = ¢, we find that F™ is also D-recurrent.
Conversely, if F* and F™ are D-recurrent spaces with the function
¢ = @, then from (4.10) we get D" ;xpr = 0. Thus we have:

THEOREM 4.2. If a Finsler space F™ can be transformed into a D-
recurrent space F™ with the function ¢ by the projective change, then
F™ must be D-recurrent one with the function ¢ = ¢ if and only if the
projective factor p satisfies D-condition.
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