• Title/Summary/Keyword: generalized-K distribution

Search Result 519, Processing Time 0.02 seconds

On Reliability and Ratio in the Beta Case

  • Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.541-547
    • /
    • 2009
  • We consider distribution, reliability and moment of ratio in two independent beta random variables X and Y, and reliability and $K^{th}$ moment of ratio are represented by a mathematical generalized hypergeometric function. We introduce an approximate maximum likelihood estimate(AML) of reliability and right-tail probability in the beta distribution.

An approach to improving the Lindley estimator

  • Park, Tae-Ryoung;Baek, Hoh-Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1251-1256
    • /
    • 2011
  • Consider a p-variate ($p{\geq}4$) normal distribution with mean ${\theta}$ and identity covariance matrix. Using a simple property of noncentral chi square distribution, the generalized Bayes estimators dominating the Lindley estimator under quadratic loss are given based on the methods of Brown, Brewster and Zidek for estimating a normal variance. This result can be extended the cases where covariance matrix is completely unknown or ${\Sigma}={\sigma}^2I$ for an unknown scalar ${\sigma}^2$.

Optimal designing of skip lot sampling plan of type SkSP-2 with double sampling plan as the reference plan under generalized exponential distribution

  • Suresh, K.K.;Kavithamani, M.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.77-84
    • /
    • 2014
  • In this paper, a optimal designing methodology is proposed to determine the parameters for skip-lot sampling plan of type SkSP-2 plan with double sampling plan as reference plan, when the lifetime of the product follows generalized exponential distribution. The two points on the operating characteristic curve approach are used to find the optimal parameters for the proposed plan. The plan parameters are determined so as to minimize the average sample number subject to satisfying simultaneously both producer and consumer risks at the acceptable and limiting quality levels respectively.

  • PDF

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

The Marshall-Olkin generalized gamma distribution

  • Barriga, Gladys D.C.;Cordeiro, Gauss M.;Dey, Dipak K.;Cancho, Vicente G.;Louzada, Francisco;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.245-261
    • /
    • 2018
  • Attempts have been made to define new classes of distributions that provide more flexibility for modelling skewed data in practice. In this work we define a new extension of the generalized gamma distribution (Stacy, The Annals of Mathematical Statistics, 33, 1187-1192, 1962) for Marshall-Olkin generalized gamma (MOGG) distribution, based on the generator pioneered by Marshall and Olkin (Biometrika, 84, 641-652, 1997). This new lifetime model is very flexible including twenty one special models. The main advantage of the new family relies on the fact that practitioners will have a quite flexible distribution to fit real data from several fields, such as engineering, hydrology and survival analysis. Further, we also define a MOGG mixture model, a modification of the MOGG distribution for analyzing lifetime data in presence of cure fraction. This proposed model can be seen as a model of competing causes, where the parameter associated with the Marshall-Olkin distribution controls the activation mechanism of the latent risks (Cooner et al., Statistical Methods in Medical Research, 15, 307-324, 2006). The asymptotic properties of the maximum likelihood estimation approach of the parameters of the model are evaluated by means of simulation studies. The proposed distribution is fitted to two real data sets, one arising from measuring the strength of fibers and the other on melanoma data.

Estimation for generalized half logistic distribution based on records

  • Seo, Jung-In;Lee, Hwa-Jung;Kan, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1249-1257
    • /
    • 2012
  • In this paper, we derive maximum likelihood estimators (MLEs) and approximate MLEs (AMLEs) of the unknown parameters in a generalized half logistic distribution when the data are upper record values. As an illustration, we examine the validity of our estimation using real data and simulated data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE) through a Monte Carlo simulation for various record values of size.

Objective Bayesian multiple hypothesis testing for the shape parameter of generalized exponential distribution

  • Lee, Woo Dong;Kim, Dal Ho;Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.217-225
    • /
    • 2017
  • This article deals with the problem of multiple hypothesis testing for the shape parameter in the generalized exponential distribution. We propose Bayesian hypothesis testing procedures for multiple hypotheses of the shape parameter with the noninformative prior. The Bayes factor with the noninformative prior is not well defined. The reason is that the most of the noninformative prior can be improper. Therefore we study the default Bayesian multiple hypothesis testing methods using the fractional and intrinsic Bayes factors with the reference priors. Simulation study is performed and an example is given.

Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring

  • Seo, Jung-In;Kim, Yongku;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • In this paper, we derive maximum likelihood estimators (MLEs) and approximate maximum likelihood estimators (AMLEs) of unknown parameters in a generalized half logistic distribution under Type-II hybrid censoring. We also obtain approximate confidence intervals using asymptotic variance and covariance matrices based on the MLEs and the AMLEs. As an illustration, we examine the validity of the proposed estimation using real data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE), bias, and length of the approximate confidence interval through a Monte Carlo simulation for various censoring schemes.

Noninformative priors for the shape parameter in the generalized Pareto distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.171-178
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the parameter of interest is the shape parameter. We developed the first order and the second order matching priors.We revealed that the second order matching prior does not exist. It turns out that the reference prior satisfies a first order matching criterion, but Jeffrey's prior is not a first order matching prior. Some simulation study is performed and a real example is given.

Fourier Series Approximation for the Generalized Baumgartner Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.451-457
    • /
    • 2012
  • Baumgartner et al. (1998) proposed a novel statistical test for the null hypothesis that two independently drawn samples of data originate from the same population, and Murakami (2006) generalized the test statistic for more than two samples. Whereas the expressions of the exact density and distribution functions of the generalized Baumgartner statistic are not yet found, the characteristic function of its limiting distribution has been obtained. Due to the development of computational power, the Fourier series approximation can be readily utilized to accurately and efficiently approximate its density function based on its Laplace transform. Numerical examples show that the Fourier series method provides an accurate approximation for statistical quantities of the generalized Baumgartner statistic.