Browse > Article
http://dx.doi.org/10.7465/jkdi.2013.24.1.171

Noninformative priors for the shape parameter in the generalized Pareto distribution  

Kang, Sang Gil (Department of Computer and Data Information, Sangji University)
Kim, Dal Ho (Department of Statistics, Kyungpook National University)
Lee, Woo Dong (Department of Asset Management, Daegu Haany University)
Publication Information
Journal of the Korean Data and Information Science Society / v.24, no.1, 2013 , pp. 171-178 More about this Journal
Abstract
In this paper, we develop noninformative priors for the generalized Pareto distribution when the parameter of interest is the shape parameter. We developed the first order and the second order matching priors.We revealed that the second order matching prior does not exist. It turns out that the reference prior satisfies a first order matching criterion, but Jeffrey's prior is not a first order matching prior. Some simulation study is performed and a real example is given.
Keywords
Generalized Pareto distribution; matching prior; reference prior; shape parameter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Behrens, C., Lopes, H. F. and Gamerman, D. (2004). Bayesian analysis of extreme events with threshold estimation. Statistical Modelling, 4, 227-244.   DOI
2 Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207.   DOI   ScienceOn
3 Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo et al., Oxford University Press, Oxford, 35-60.
4 Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
5 Castellanos, M. E. and Cabras, A. (2007). A default Bayesian procedures for the generalized Pareto distribution. Journal of Statistical Planning and Inference, 137, 473-483.   DOI   ScienceOn
6 Castillo, E. and Hadi, A. (1997). Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association, 92, 1609-1620.   DOI   ScienceOn
7 Coles, S. G. and Powell, E. A. (1996). Bayesian methods in extreme value modelling: A review and new developments. International Statistical Review, 64, 119-136.   DOI   ScienceOn
8 Cox, D. R. and Reid, N. (1987). Parametric orthogonality and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.
9 Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363.   DOI   ScienceOn
10 Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics, 24, 141-159.   DOI   ScienceOn
11 Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds. Journal of Royal Statistical Society B, 52, 393-442.
12 de Zea Bermudez, P. and Amaral Turkman, M. A. (2003). Bayesian approach to parameter estimation of the generalized Pareto distribution. Test, 12, 259-277.   DOI   ScienceOn
13 Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084.   DOI   ScienceOn
14 Balkema, A. A. and de Haan, L. (1974). Residual lifetime at great age. The Annals of Probability, 2, 792-804.   DOI   ScienceOn
15 Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling extremal events for insurance and finance, Springer, Berlin.
16 Giles, D. E., Feng, H. and Godwin, R. T. (2011). On the bias of the maximum likelihood estimators for the two-parameter Lomax distribution, Econometrics Working Paper EWP1104, Department of Economics, University of Victoria, Canada.
17 Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo et al., Oxford University, 195-210.
18 Ho, K. (2010). A matching prior for extreme quantile estimation of the generalized Pareto distribution. Journal of Statistical Planning and Inference, 140, 1513-1518.   DOI   ScienceOn
19 Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349.   DOI   ScienceOn
20 Hogg, R. V. and Klugman, S. A. (1983). On estimation of long-tailed skewed distributions with actuarial applications. Journal of Econometrics, 23, 91-102.   DOI   ScienceOn
21 Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions. Journal of the Korean Data & Information Science Society, 22, 1241-1250.
22 Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
23 Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505.   DOI   ScienceOn
24 Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975.   DOI   ScienceOn
25 Pickands, J. (1975). Statistical infernces using extreme order statistics. The Annals of Statistics, 3, 119-131.   DOI   ScienceOn
26 Smith, R. L. (1987). Estimating tails of probability distributions. The Annals of Statistics, 15, 1174-1207.   DOI   ScienceOn
27 Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.
28 Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608.   DOI   ScienceOn
29 Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.