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Abstract
Attempts have been made to define new classes of distributions that provide more flexibility for modelling

skewed data in practice. In this work we define a new extension of the generalized gamma distribution (Stacy,
The Annals of Mathematical Statistics, 33, 1187–1192, 1962) for Marshall-Olkin generalized gamma (MOGG)
distribution, based on the generator pioneered by Marshall and Olkin (Biometrika, 84, 641–652, 1997). This
new lifetime model is very flexible including twenty one special models. The main advantage of the new family
relies on the fact that practitioners will have a quite flexible distribution to fit real data from several fields, such as
engineering, hydrology and survival analysis. Further, we also define a MOGG mixture model, a modification of
the MOGG distribution for analyzing lifetime data in presence of cure fraction. This proposed model can be seen
as a model of competing causes, where the parameter associated with the Marshall-Olkin distribution controls the
activation mechanism of the latent risks (Cooner et al., Statistical Methods in Medical Research, 15, 307–324,
2006). The asymptotic properties of the maximum likelihood estimation approach of the parameters of the model
are evaluated by means of simulation studies. The proposed distribution is fitted to two real data sets, one arising
from measuring the strength of fibers and the other on melanoma data.

Keywords: cure fraction model, generalized gamma distribution, geometric distribution, maximum
likelihood, lifetime data

1. Introduction

Standard lifetime distributions usually present very strong restrictions to produce bathtub curves, and
thus appear to be inappropriate for data with this characteristic. The three-parameter generalized
gamma (GG) (Stacy, 1962) distribution includes as special models the exponential, Weibull, gamma,
and Rayleigh distributions, among others. It is suitable for modeling data with hazard rate function
(hrf) of different forms (increasing, decreasing, bathtub and unimodal) and useful for estimating in-
dividual hazard functions and both relative hazards and relative times (Cox et al., 2007). The GG
distribution has been used in several research areas such as engineering, hydrology and survival anal-
ysis. Its probability density function (pdf) and cumulative distribution function (cdf) are given by (for
t > 0)

fk,β,τ(t) =
τ

βΓ(k)

(
t
β

)k τ−1

exp
[
−

(
t
β

)τ]
(1.1)
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and

Fk,β,τ(t) = ΓG

([
t
β

]τ
; k

)
, (1.2)

respectively, where τ > 0, β > 0, k > 0, ΓG(t; k) = Γ(k)−1
∫ t

0 wk−1e−wdw is the incomplete gamma
function ratio and Γ(k) =

∫ ∞
0 wk−1e−wdw (for k > 0) is the gamma function. In the density function

(1.1), β is a scale parameter and τ and k are shape parameters. The Weibull and gamma distributions
are special models of (1.1) when k = 1 and τ = 1, respectively. The GG distribution approaches the
log-normal distribution when β = 1 and k → ∞.

The GG distribution includes all four more common types of the hrf: monotonically increasing
and decreasing, bathtub and unimodal (Cox et al., 2007). This property is useful in reliability and
survival analysis. This model has been used in several applied areas such as engineering, economics
and survival analysis.

Now, we define an extended form of the density function (1.1) (for t > 0) given by

f (t) =
|τ|

βΓ(k)

(
t
β

)k τ−1

exp
[
−

(
t
β

)τ]
, (1.3)

where τ is not zero and the other parameters are positive. The cdf corresponding to (1.3) becomes

F(t) = ΓG

([
t
β

]τ
; k

)
for τ > 0 and F(t) = 1 − ΓG

([
t
β

]τ
; k

)
for τ < 0. (1.4)

In order to avoid convergence problems using the maximum likelihood method, Lawless (2002)
proposed a re-parametrized density function with new parameters given by µ = log(β) + τ−1 log(k),
σ = (τ

√
k)−1 and λ = (

√
k)−1 and adding the extra case λ = 0. So, we define the pdf

f (t) =


c(λ)
σt

exp
{

(log(t) − µ)
λσ

− 1
λ2 exp

[
λ

(log(t) − µ)
σ

]}
, if λ , 0,

1

t
√

2πσ
exp

−1
2

[
log(t) − µ

σ

]2
 , if λ = 0,

(1.5)

where t > 0, µ ∈ R, σ > 0 and λ ∈ R are the location, scale and shape parameters, respectively,
and c(λ) = |λ|/Γ(λ−2). The special case λ = σ gives the two-parameter gamma distribution. The
Weibull distribution arises when λ = 1, and the very special case λ = σ = 1 corresponds to the
exponential distribution. The case λ = 0 is the log normal distribution and, for λ = −1, we obtain a
reciprocal Weibull distribution. In addition, the half-normal distribution is obtained from (1.5) when
σ = λ =

√
2.

The cdf (for t > 0) corresponding to (1.5) is given by

F(t) =



ΓG

{
λ−2 exp

[
λ

(
log(t) − µ

σ

)]
; λ−2

}
, if λ > 0,

Φ

[
log(t) − µ

σ

]
, if λ = 0,

1 − ΓG

{
λ−2 exp

[
λ

(
log(t) − µ

σ

)]
; λ−2

}
, if λ < 0,

(1.6)
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where Φ(·) denotes the standard normal cumulative distribution.
Marshall and Olkin (1997) proposed a method of adding a parameter α > 0 to define a class

of distributions. If F̄(t) denotes a baseline survival function, they defined the Marshall and Olkin-F
(MO-F) distribution by the survival function given by

Ḡ(t) =
αF̄(t)

1 − ᾱF̄(t)
=

αF̄(t)
F(t) + αF̄(t)

, −∞ < t < ∞, α > 0, (1.7)

where ᾱ = 1 − α. The transformed distribution contains the baseline model as a special case when
α = 1. It has a stability property in the sense that the result of applying twice the transformation is
also in the transformed model.

The MO-F density function, say g(t), is given by

g(t) =
α f (t)[

1 − ᾱF̄(t)
]2 , −∞ < t < ∞, (1.8)

where f (t) = dF(t)/dt is the baseline density function.
Survival models with a surviving fraction (also known as cure rate models or long-term survival

models) have generated significant interest in the survival analysis literature. Models that accommo-
date a cured fraction have widely developed. A very popular type of cure rate model is the mixture
distribution introduced by Boag (1949) and Berkson and Gage (1952). Basic references on cure rate
distributions are the books by Maller and Zhou (1996) and Ibrahim et al. (2001).

This paper introduces a new four-parameter model named the Marshall-Olkin generalized gamma
(MOGG) distribution by inserting the cdf (1.6) in equation (1.7). This new lifetime model is very
flexible and includes twenty one special models. The main advantage of the new family is because
practitioners have a very flexible distribution to fit real data from several fields. The MOGG distribu-
tion is also modified to model the possibility that long-term survivors are presented in the data. In the
proposed model, parameter α associated with the Marshall-Olkin distribution controls the activation
mechanism of the latent risks (Cooner et al., 2006).

The rest of the paper proceeds as follows. Sections 2–3 formulates the MOGG model and MOGG
mixture model. Inference based on maximum likelihood for both models is addressed in Section
4. Two simulation studies are presented in Section 5 to investigate some finite sample properties.
In Section 6, our methodology is illustrated on a real data set. Finally, Section 7 presents some
concluding remarks.

2. The Marshall-Olkin generalized gamma distribution

The MOGG survival function is given by

Ḡ(t) =



α
(
1 − ΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

})
1 − ᾱ

(
1 − ΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

}) , if λ > 0,

αΦ
[
− log(t)−µ

σ

]
1 − ᾱΦ

[
− log(t)−µ

σ

] , if λ = 0,

αΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

}
1 − ᾱΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

} , if λ < 0.

(2.1)
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Figure 1: Density and survival functions of the Marshall-Olkin generalized gamma distribution and GG distri-
bution with parameters µ = 0, σ = 1, and λ = 0.4 (upper panel), λ = 1(left panel). GG = generalized gamma.

The corresponding MOGG pdf becomes

g(t) =



c(λ)α exp
{

1
λ

[
log(t)−µ

σ

]
− 1

λ2 exp
{
λ
[

log(t)−µ
σ

]}}
tσ

[
1 − ᾱ

(
1 − ΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

})]2 , if λ > 0,

α exp
{
− 1

2

[
log(t)−µ

σ

]2
}

t
√

2πσ
[
1 − ᾱΦ

[
− log(t)−µ

σ

]]2 , if λ = 0,

c(λ)α exp
{

1
λ

[
log(t)−µ

σ

]
− 1

λ2 exp
{
λ
[

log(t)−µ
σ

]}}
tσ

[
1 − ᾱΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

}]2 , if λ < 0.

(2.2)

Henceforth, we denote by T a random variable having the MOGG(α, µ, σ, λ) density function (2.2).
In Figure 1 plot the MOGG density functions for some fixed values of α and λ. These plots indicate
that the new distribution is very flexible and that the values of λ and α have a substantial effect on
skewness and kurtosis. The MOGG model includes several distributions listed as special models in
Table 1. For example, the MO-exponential and MO-Weibull (Marshall and Olkin, 1997; Ghitany,
2005) distributions are obtained when λ = σ = 1 and λ = 1, respectively.
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Table 1: Some special models of the MOGG distribution.

Case µ σ λ Distribution Reference

α = 1

1 µ σ λ GG Cox et al. (2007)
2 µ σ 1 Weibull
3 µ λ λ Gamma
4 µ 1/2 1 Rayleigh
5 µ σ 0 Log-normal
6 µ σ −1 Inverse Weibull
7 µ 1 1 exponential

0 < α < 1

8 µ σ λ Geometric GG Ortega et al. (2011)
9 µ σ 1 Geometric Weibull Barreto-Souza et al. (2011)
10 µ λ λ Geometric Gamma
11 µ 1/2 1 Geometric Rayleigh
12 µ σ 0 Geometric Log-normal
13 µ σ −1 Geometric Inverse Weibull
14 µ 1 1 Geometric exponential Adamidis and Loukas (1998)

α > 1

8 µ σ λ Complementary Geometric GG
9 µ σ 1 Complementary Geometric Weibull Tojeiro et al. (2012)
10 µ λ λ Complementary Geometric Gamma
11 µ 1/2 1 Complementary Geometric Rayleigh
12 µ σ 0 Complementary Geometric Log-normal
13 µ σ −1 Complementary Geometric Inverse Weibull
14 µ 1 1 Complementary Geometric exponential Louzada et al. (2011)

α > 0

15 µ σ λ MOGG
16 µ σ 1 MO Weibull Marshall and Olkin (1997)
17 µ λ λ MO Gamma
18 µ 1/2 1 MO Rayleigh
19 µ σ 0 MO Log-normal
20 µ σ −1 MO Inverse Weibull
21 µ 1 1 MO exponential Marshall and Olkin (1997)

MO =Marshall-Olkin; GG = generalized gamma.

We can generate a random variable t having the MOGG distribution based on equation (2.1). Let
Γ−1

G (u; γ) denote the quantile function (qf) of the gamma distribution with mean and variance equal to
γ, i.e., ΓG(Γ−1

G (u; γ); γ) = u. For λ > 0, we have

log(t) = µ +
σ

λ
log

[
Γ−1

G

( uα
1 − uᾱ

; λ−2
)]
, (2.3)

where U ∼ U(0, 1). Similarly, for λ < 0,

log(t) = µ +
σ

λ
log

[
Γ−1

G

(
(1 − u)α

1 − (1 − u)ᾱ
; λ−2

)]
. (2.4)

Therefore, the qf of T , say t = Q(u), can be easily obtained from (2.3) and (2.4).
From equations (2.1) and (2.2), the MOGG hrf is given by

hMOGG(t) =
h(t)

1 − (1 − α)F̄(t)
, t > 0, (2.5)

where h(t) and F̄(t) are the hazard and survival functions of the GG distribution, respectively. Note that
hMOGG(t)/h(t) is increasing in t for 0 < α < 1 and decreasing for α > 1. Further, h(t) ≤ hMOGG(t) ≤
h(t)/α for 0 < α < 1, h(t)/α ≤ hMOGG(t) ≤ h(t) for α > 1 and that limt→∞ hMOGG(t) = limy→∞ h(y).
Hence, the limit behavior of the MOGG hrf is the same as that one of the GG hrf. Figure 2 displays
the plots of the MOGG hrf for some parameter values.
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Figure 2: Marshall-Olkin generalized gamma hrf for some parameter values. hrf = hazard rate function;
GG = generalized gamma.

3. The Marshall-Olkin generalized gamma mixture model

In survival and reliability studies, a part of the population may not be susceptible to the event of inter-
est. Maller and Zhou (1996) indicate that it is adequate to consider a two components mixture model,
in the sense that one component represents the failure or survival time of susceptible individuals to a
certain event (in risk individuals; IR), while the other component represents the survival times of the
non-susceptible individuals to the event (out of risk individuals; OR), allowing infinite survival times.
An individual belongs to one group (or another) with certain probability. Then, the model formula-
tion is described as follows. Let T be a random variable representing the time until the occurrence of
an event of interest, and θ (0 < θ < 1) be the probability of an individual belong to the OR group.
Suppose a population for which there exists the possibility of cure. Then, the improper population
survival function is given by (Maller and Zhou, 1996), S p(t) = θS OR(t) + (1 − θ)S IR(t), where S OR(t)
and S IR(t) are the survival functions of the OR and IR individuals, respectively. Following Maller
and Zhou (1996), the OR individuals shall not present the event of interest, i.e., their failure times are
infinite, so that S OR(t) = P (T > t|OR) = 1, ∀t > 0. Then, we can rewrite S p(t) as

S p(t) = θ + (1 − θ)S IR(t). (3.1)
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All IR individuals will present the event of interest at the same time, i.e., limt→∞ S IR(t) = 0. Conse-
quently, we have limt→∞ S p(t) = θ, and therefore the survival function (not conditional) is improper
and its limit corresponds to the OR individual proportion. The MOGG mixture is defined by selecting
in (3.1) the MOGG survival function (2.1) (S IR(t)), implying that

S p(t) =



θ + (1 − θ)
α
(
1 − ΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

})
1 − ᾱ

(
1 − ΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

}) , if λ > 0,

θ + (1 − θ)
αΦ

[
− log(t)−µ

σ

]
1 − ᾱΦ

[
− log(t)−µ

σ

] , if λ = 0,

θ + (1 − θ)
αΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

}
1 − ᾱΓG

{
λ−2 exp

[
λ
(

log(t)−µ
σ

)]
; λ−2

} , if λ < 0.

(3.2)

The MOGG distribution in the MOGG mixture model can be interpreted as follows. Suppose that
the event of interest in the IR group may be caused by an unknown competing cause leading to latent
competing risk scenarios. Let M denote the unobservable number of causes of the event of interest
for the IR group. Suppose that M follows a geometric distribution with mean 1/(1 − α) (0 < α < 1).
The time for the jth cause to produce the event of interest is denoted by Z j (for j = 1, . . . , M). We
assume that, conditional on M, the Z j’s are independent and identically distributed random variables
having the GG distribution given by (1.7). Further, we consider that Z1, Z2, . . . are independent of M.
The observable time to the event of interest is defined by the random variable T = min{Z1, . . . , ZM}.
Under this setup, the survival function for an IR individual has the MOGG distribution (2.1). If α > 1
and M has a geometric distribution with mean 1/(1 − α−1) and T = max(T1, . . . , TM), then T has a
survival function given by (2.1). Moreover, the proposed model in (3.2) with α = θ yields a cure rate
survival model with an activation mechanism (Cooner et al., 2006; Cooner et al., 2007). When the
event of interest happens due to any one of the possible causes it gives the first activation scheme.
The last activation is obtained when the event of interest only takes place after all M causes have been
occurred. Finally, the model (2.1) with α = 1 gives the GG mixture model, which is the survival cure
rate model with random activation mechanism, where the distribution of activation of each cause is a
discrete uniform distribution. Thus, the parameter α controls the activation mechanism of the risks in
the proposed model.

The MOGG mixture is flexible, because the MOGG distribution is a wider family that contains
most commonly used distributions, such as the exponential, Weibull, log normal and gamma models
(Table 1).

4. Inference

4.1. Inference for the Marshall-Olkin generalized gamma model

Let t1, . . . , tn be a random sample of size n from the MOGG distribution with unknown parameter
vector ϑ = (α, µ, σ, λ). We estimate these parameters by the method of maximum likelihood. Setting
zi = σ

−1[log(ti) − µ], the log-likelihood function for ϑ is given by

ℓ(ϑ) ∝
n∑

i=1

ℓi(ϑ), (4.1)
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where

ℓi(ϑ) =


log[c(λ)] + log(α) +

zi

λ
+

eλzi

λ2 − log(σti) − 2 log
{
1 − ᾱ

[
1 − ΓG

(
λ−2eλzi ; λ−2

)]}
, if λ > 0,

log(α) − 0.5z2
i − log(σti) − 2 log {1 − ᾱΦ(−zi)} , if λ = 0,

log[c(λ)] + log(α) +
zi

λ
+

eλzi

λ2 − log(σti) − 2 log
{
1 − ᾱΓG

(
λ−2eλzi ; λ−2

)}
, if λ < 0.

The maximum likelihood estimate (MLE) ϑ̂ of ϑ is obtained by maximizing the log-likelihood func-
tion (4.1). Numerical maximization of the log-likelihood function ℓ(ϑ) is accomplished by using the
R software (R Development Core Team, 2013). The computational program is available from the au-
thors upon request. Under general regularity conditions (Maller and Zhou, 1996), we can approximate
the distribution of ϑ̂ by the multivariate normal distribution with mean vector ϑ and covariance matrix
Σ(ϑ̂) = {− ∂2ℓ(ϑ; t, δ)/∂ϑ∂ϑ⊤}−1, which can be evaluated at ϑ = ϑ̂. The required second derivatives
can be computed numerically.

We can easily check the adequacy of the fitted GG model by testing the null hypothesis H0 : α = 1.
The log-likelihood ratio (LR) statistic for testing H0 is given by Λ = 2 [ℓ(α̂, µ̂, σ̂, λ̂) − ℓ(1, µ̃, σ̃, λ̃)],
where α̂, µ̂, σ̂, and λ̂ are the unrestricted estimates and µ̃, σ̃, and λ̃ are the restricted estimates under
H0. The limiting null distribution of this statistic is chi-square with one degree of freedom.

4.2. Inference for the Marshall-Olkin generalized gamma mixture model

Let us consider the situation when the failure time T in Section 3 is not completely observed and is
subject to right censoring. Let Ci denote the censoring time. In a sample of size n, we then observe
yi = min{Ti,Ci} and δi = I(Ti ≤ Ci), where δi = 1 if Ti is a failure time and δi = 0 if it is right
censored, for i = 1, . . . , n.

Let xi = (xi1, . . . , xip1 )⊤ and wi = (wi1, . . . ,wip2 ) denote the vectors of covariates for the ith indi-
vidual. Further, we relate θi (the cure fraction) to covariates xi by the logistic link and µi to covariates
wi by the identity link, respectively, i.e.,

log
(

θi

1 − θi

)
= x⊤i β1 and µi = w⊤i β2, (4.2)

where β1 and β2 denote the corresponding parameter vectors. The mixture model is not identifiable
when the cure fraction is a constant θ, but is identifiable when it is modeled by a logistic regression
with non-constant covariates (Li et al., 2001).

We can write the likelihood function for ϑ = (σ, λ,β⊤1 ,β
⊤
2 )⊤ from (4.2) under non-informative

censoring as

L(ϑ) ∝
n∏

i=1

fp(yi;ϑ)δi S p(yi;ϑ)1−δi , (4.3)

where S p(y;ϑ) is the improper survival function in (3.2) and fp(y;ϑ) = ∂S p(y;ϑ)/∂y is the corre-
sponding improper pdf.

From the likelihood function in (4.3), the maximum likelihood estimation of the parameter ϑ can
be conducted. Numerical maximization of the log-likelihood function ℓ(ϑ) = log(L(ϑ)) is performed
using the R software (R Development Core Team, 2013). Under general regularity conditions (Maller
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Table 2: Averages of maximum likelihood estimates, SD, RMSE, CP of the parameters of the Marshall-Olkin
generalized gamma model

n α = 0.2 α = 2.0
µ̂ σ̂ λ̂ α̂ µ̂ σ̂ λ̂ α̂

50

Mean 0.932 0.502 2.207 0.256 1.065 0.451 2.266 1.982
SD 0.242 0.143 0.660 0.112 0.215 0.139 0.568 1.244

RMSE 0.251 0.143 0.691 0.125 0.224 0.147 0.627 1.244
CP 0.913 0.918 0.921 0.920 0.934 0.931 0.925 0.957

100

Mean 0.988 0.477 2.297 0.227 1.052 0.462 2.158 1.971
SD 0.233 0.144 0.731 0.100 0.175 0.109 0.360 1.076

RMSE 0.233 0.146 0.789 0.104 0.183 0.116 0.393 1.076
CP 0.932 0.945 0.934 0.945 0.952 0.943 0.948 0.933

200

Mean 1.031 0.462 2.299 0.202 1.033 0.477 2.096 1.987
SD 0.185 0.119 0.661 0.073 0.134 0.083 0.227 0.851

RMSE 0.187 0.125 0.725 0.073 0.137 0.086 0.246 0.851
CP 0.943 0.950 0.954 0.948 0.954 0.948 0.952 0.953

400

Mean 1.028 0.471 2.163 0.195 1.032 0.478 2.063 1.915
SD 0.136 0.086 0.396 0.050 0.093 0.057 0.149 0.548

RMSE 0.139 0.091 0.428 0.050 0.098 0.061 0.161 0.554
CP 0.948 0.946 0.951 0.946 0.951 0.945 0.952 0.947

SD = standard deviation; RMSE = square root of mean square error; CP = coverage probability.

and Zhou, 1996), the MLE ϑ̂ has an approximate multivariate normal distribution with mean vector ϑ
and covariance matrix Σ(ϑ̂), which can be estimated by Σ̂(ϑ̂) = {−∂2ℓ(ϑ; t, δ)/(∂ϑ∂ϑ⊤)}−1, evaluated
at ϑ = ϑ̂. The second derivatives of this matrix can be computed numerically.

Hypothesis tests can also be conducted. Let ϑ1 and ϑ2 be proper disjoint subsets of ϑ. We aim
to test H0 : ϑ1 = ϑ01 against H1 : ϑ1 , ϑ01 (ϑ2 unspecified). Let ϑ̂0 maximize L(ϑ) constrained to
H0 and define the LR statistic as Λ = 2[ℓ(ϑ̂) − ℓ(ϑ̂0)], where ℓ(·) is the log-likelihood. Under H0 and
general regularity conditions, Λ converges in distribution to the chi-square distribution with dim(ϑ1)
degrees of freedom.

Alternatively, non-nested models can be compared using the Akaike information criterion (AIC)
given by AIC = −2ℓ(ϑ̂) + 2#(ϑ) and the Schwartz-Bayesian criterion (SBC) defined by SBC =
−2ℓ(ϑ̂) + #(ϑ) log(n), where #(ϑ) is the number of model parameters. The model with the smallest
value of any of these criteria (among all models considered) is commonly taken as the preferred model
for describing a given dataset.

5. Simulation study

Here, we evaluate the performance of the MLEs of the parameters of the MOGG model and MOGG
mixture model by means of two simulation studies.

5.1. Simulated Marshall-Olkin generalized gamma mixture model

From equation (2.3), we generate 1,000 samples of size n = 50, 100, 200, and 400 from the MOGG
model with parameters µ = 1.0, σ = 0.5, λ = 2.0, and α = 0.2 and 2.0. For each configuration, we
compute the average of the MLEs of the model parameters, their standard deviations (SDs), the square
root of the mean squared errors (RMSEs) and the coverage probabilities (CPs) of the 95% intervals of
the MLEs.

Table 2 reports the simulation results. We note that the averages of the MLEs of the parameters
of the MOGG model are close to the true values. As expected, the SDs and RMSEs decrease as



254 Barriga GDC, Cordeiro GM, Dey DK, Cancho VG, Louzada F, Suzuki AK

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

Theoretical Quantiles

µ̂

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical Quantiles

σ̂

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

Theoretical Quantiles

λ̂

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

Theoretical Quantiles

α̂

Figure 3: QQ-normal plots of the maximum likelihood estimates of the parameters (µ = 1.0, σ = 0.5, λ = 2.0,
and α = 0.2) for the Marshall-Olkin generalized gamma model with sample size n = 50.

the sample size increases. Table 2 also shows that the CP becomes closer to the nominal value as
the sample size increases. Further, we plot the empirical distributions of the MLEs µ̂, σ̂, λ̂, and α̂
for the sample size 50 (Figure 3). These plots reveal that normal distribution provides a reasonable
approximation for the distributions of these estimates.

5.2. Simulated Marshall-Olkin generalized gamma mixture model

In this study, we consider the MOGG mixture model given in (3.2) with parameters µi, σ = 0.5,
λ = 2, α = 0.2, 2, and θi for i = 1, . . . , n. In the simulation study, we have two covariates, say
xi and wi, such that xi is generated from a Bernoulli(0.5) distribution and wi is generated from the
N(0, 1) distribution. Thus, under the logit link, log(θi/(1 − θi)) = β10 + β11 xi and µi = β20 + β21 wi,
where β10 = −0.5, β11 = 0.7, β20 = 1, and β21 = 0.5. The censoring times are sampled from the
Uniform(0, τ), where τ is set in order to control the proportion of censored observations on average to
be approximately 60%.

We consider sample sizes of n = 100, 300, and 600. For each of these schemes, we perform 1,000
simulations to calculate the average of the MLEs, the mean squared errors (MSE) of the MLEs and
coverage probabilities of 95% confidence intervals for the parameters in model (3.2). Table 3 given
the simulation results. We note that the averages of MLEs are close to the true values, the MSEs
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Table 3: Averages of maximum likelihood estimates, SD, RMSE, CP of the parameters of the Marshall-Olkin
generalized gamma model

α n σ̂ λ̂ α̂ β̂10 β̂11 β̂20 β̂21

0.2

100

Mean 0.572 1.868 0.271 −0.515 0.708 0.871 0.541
SD 0.138 0.428 0.132 0.222 0.310 0.257 0.223

RMSE 0.156 0.448 0.150 0.222 0.310 0.287 0.245
CP 0.967 0.987 0.978 0.959 0.948 0.960 0.939

300

Mean 0.548 1.933 0.255 −0.512 0.710 0.899 0.518
SD 0.124 0.378 0.108 0.172 0.231 0.234 0.219

RMSE 0.133 0.383 0.121 0.172 0.231 0.254 0.222
CP 0.956 0.958 0.962 0.946 0.937 0.958 0.949

600

Mean 0.526 1.982 0.232 −0.494 0.688 0.947 0.482
SD 0.115 0.358 0.089 0.113 0.150 0.204 0.195

RMSE 0.117 0.358 0.095 0.113 0.150 0.210 0.200
CP 0.954 0.948 0.952 0.946 0.937 0.959 0.949

2.0

100

Mean 0.502 2.083 2.273 −0.507 0.706 1.017 0.511
SD 0.125 0.389 1.289 0.251 0.348 0.205 0.233

RMSE 0.125 0.397 1.317 0.251 0.348 0.206 0.235
CP 0.977 0.977 0.968 0.950 0.952 0.958 0.943

300

Mean 0.500 2.074 2.235 −0.514 0.700 1.010 0.501
SD 0.114 0.316 1.169 0.183 0.240 0.188 0.215

RMSE 0.114 0.325 1.192 0.183 0.240 0.188 0.216
CP 0.960 0.948 0.960 0.953 0.948 0.951 0.954

600

Mean 0.490 2.069 2.084 −0.501 0.699 1.023 0.452
SD 0.092 0.248 0.908 0.132 0.172 0.151 0.115

RMSE 0.093 0.257 0.912 0.132 0.172 0.152 0.117
CP 0.949 0.962 0.981 0.946 0.948 0.956 0.949

SD = standard deviation; RMSE = square root of mean square error; CP = coverage probability.

Table 4: The AIC and SBC statistics for the fitted distributions

Distributions Criterion
−2 max ℓ() AIC SBC

G 47.90 51.90 56.20
GG 29.17 35.17 41.60

MOGG 24.06 32.07 40.63

AIC = Akaike information criterion; SBC = Schwartz-Bayesian criterion; G = gamma; GG = generalized gamma; MOGG =
Marshall-Olkin generalized gamma

decrease as sample size increases and the empirical coverage probabilities are closer to the nominal
coverage level when sample size increases.

6. Applications

6.1. Strength of fibers

The data set is obtained from Smith and Naylor (1987) and describe the strengths of 1.5 cm glass
fibers, measured at the National Physical Laboratory, England. This data set is of size n = 63 whose
lowest value, first quartile, mean, median, highest value, and SD are equal to 0.550, 1.375, 1.507,
1.590, 2.240, and 0.3241, respectively.

The gamma (G), GG, and MOGG distributions are fitted to these data. For comparing the fitted
models, we compute the AIC and SBC statistics. Table 4 lists the values of these criteria. According
to both criteria, the MOGG and GG distributions are the best models. We also emphasize the gain
provided by the MOGG distribution in relation to beta generalized gamma distribution (Cordeiro et
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Figure 4: QQ plot of the normalized quantile residuals with an identity line for the distributions MOGG (left
panel) and GG (right panel). MOGG =Marshall-Olkin generalized gamma; GG = generalized gamma.
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Figure 5: Histogram of strength and fitted density functions (left panel) and empirical cumulative function of
strength and fitted cumulative functions (right panel). MOGG = Marshall-Olkin generalized gamma; GG =

generalized gamma.

al., 2013) (Table 2).
The LR statistics for testing the hypotheses H0 : G versus H1 : MOGG and H0 : GG versus H1 :

MOGG are Λ = 22.84 (2 d.f., p-value < 0.0001) and Λ = 5.29 (1 d.f., p-value = 0.021), respectively.
Therefore, we reject the null hypotheses in both cases in favor of the MOGG distribution at the 5%
level of significance. Figure 5 displays the plots of the MOGG and GG fitted densities to these data.
They indicate that the MOGG distribution provides a better fit than the GG model.

The QQ plot of the normalized randomized quantile residuals (Dunn and Smyth, 1996; Rigby and
Stasinopoulos, 2005) in Figure 4 (left panel) suggests that the MOGG model is acceptable. Each point
in Figure 4 corresponds to the median of five sets of ordered residuals. The values of the criteria in
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Figure 6: Kaplan-Meier estimate of the surviving function of high-dose interferon and observation groups.

Table 4, the LR statistics and the QQ plots in Figure 4, reveal that the MOGG model is the best model
to these data. The parameter estimates (and 95% asymptotic confidence intervals) for the MOGG
distribution are: α̂ = 17.801 (1.062, 298.508), µ̂ = 0.114 (−0.3901, 0.618), σ̂ = 0.334 (0.144, 0.773),
and λ̂ = 1.240 (0.025, 2.45), so that the null hypothesis H0 : λ = 0 is rejected at the significance level
of 5%. As the confidence interval for alpha is huge, for mu includes zero and for lambda includes 1,
so the related model is the Complementary Geometric Weibull (presented in case 9 on Table 1).

6.2. Melanoma data

In this section, we demonstrate an application of our models described in Section 3 to a well-known
dataset on a Phase III cutaneous melanoma clinical trial conducted by the Eastern Cooperative On-
cology Group (Kirkwood et al., 2000). The incidence of melanoma ranks among the highest among
solid tumor growths, with high mortality rates (between 60–75%) despite early detection and screen-
ing (Cooner et al., 2007). The dataset here comes from an assay for the evaluation of postoperative
treatment performance with a high dose of a certain drug (interferon alpha-2b) in order to prevent
recurrence. Patients included in the study were from 1991 to 1995, and follow-up was conducted
until 1998. The data were taken from Ibrahim et al. (2001) (labeled as E1690 data, available at
http://merlot.stat.uconn.edu/-˜mhchen/survbook/). After deleting subjects with incomplete data and
missing observation times, we have a subset of n = 408 patients with approximately 43% of censor-
ing. We consider the relapse-free survival (RFS) time (in years) as the response variable.

The following information were collected from each patient: Observed time (in years, mean =
2.31, SD = 1.93); x1i: treatment (0: observation, n = 198; 1: interferon alfa-2b, n = 210); x2i : age (in
years, mean = 48.1, SD = 13.1); x3i : nodal number (1: n = 110; 2: n = 131; 3: n = 86; 4: n = 81),
and x4i: tumor thickness (in mm, mean = 3.98 and SD = 3.22), i = 1, . . . , 408. Kaplan-Meier curves
stratified by treatment in Figure 6 level off between 0.25 and 0.42. This behavior indicates that models
that ignore the possibility of cure will not be suitable for these data.

We fit the MOGG mixture model. Table 5 presents the MLEs, the standard errors and the p-values
for the estimates of the model parameters. The estimate of the parameter (α) presents an evidence
against the mixture GG model (H0 : α = 1). This estimate indicates that the event of interest happens
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Table 5: MLEs of the parameters for the MOGG model with the covariate treatment

MOGG model Parameter Estimate Standard error p-value

Complete

α −0.082 0.165 -
σ −1.501 0.692 -
λ −0.198 0.434 -
β1,intercept −2.477 0.932 0.008
β1,treatment −0.154 0.329 0.639
β1,age −0.028 0.013 0.037
β1,nodule −0.642 0.234 0.006
β1,thickness −0.186 0.098 0.057
β2,intercept −2.537 2.408 0.292
β2,treatment −0.372 0.198 0.061
β2,age −0.004 0.007 0.523
β2,nodule −0.274 0.091 0.003
β2,thickness −0.008 0.028 0.771

Reduced

α −0.035 0.063 -
σ −2.240 1.286 -
λ −0.158 0.606 -
β1,intercept −1.560 0.816 0.056
β1,nodule −0.789 0.311 0.011
β1,thickness −0.257 0.134 0.055
β2,intercept −4.329 2.857 0.130
β2,treatment −0.422 0.185 0.022
β2,nodule −0.283 0.088 0.001

MLEs = maximum likelihood estimates; MOGG =Marshall-Olkin generalized gamma.

due to any one of the possible causes (first activation scheme), since, α̂ ∈ (0, 1). Considering the LR
statistic, we test the effect of some covariates in the model, i.e., H0 : β1,age = β1,treatment = β2,thickness =

β2,age = 0 versus H1 : at least one of the β’s are different from zero, yielding Λ = 5.054 (p-value
= 0.2812), and thus indicating that the effects of the covariates are not significant. Hence, Table
5 presents the MLEs, the standard errors and the p-values for the parameters of the MOGG model
without those covariates (reduced model). We can observe that the covariate β1,thickness is significant at
the level of 10% and the others are significant at the 5% level. Now, we consider the reduced model
as our working model, and present further analysis results based on this model. The QQ plot of the
normalized randomized quantile residuals (Dunn and Smyth, 1996; Rigby and Stasinopoulos, 2005)
for the reduced model is presented in the left panel of Figure 7 suggesting that the MOGG mixture
model produces an adequate fit.

The MLEs of the cure fraction (and standard errors) for patients with tumor thickness of 3.175 mm
(median thickness) and stratified by nodal category from 1 to 4 are: 0.4886 (0.0817), 0.3027 (0.0751),
0.1647 (0.0801), and 0.0822 (0.0651), respectively. Standard errors are obtained after application of
the delta method. The right panel of Figure 7 shows that the cure fraction decreases more rapidly for
patients with a lower nodal category.

We conclude our application dealing with the MLE of the proportion of patients who survived
beyond a certain fixed time, which is the practical interest to practitioners. For the sake of illustration,
we choose five years. This proportion is estimated from S p(5). Table 6 gives the MLE of S p(5)
stratified by nodal category (from 1 to 4) and treatment with median tumor thickness (3.175 mm).
Figure 8 displays the plots of the surviving functions for patients stratified by nodal category and
median tumor thickness (3.175 mm). We note that the survival probability diminishes rapidly with
increasing nodal category; in addition, the survival probability is greater for patients treated with
interferon alfa-2b.



The Marshall-Olkin generalized gamma distribution 259

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

N(0, 1) quantiles

N
or

m
al

iz
ed

 ra
nd

om
iz

ed
 q

ua
nt

ile
 re

si
du

al
s

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Tumor thickness(mm)

C
ur

e 
fra

ct
io

n

1
2
3
4

Figure 7: Left Panel: QQ plot of the normalized randomized quantile residuals, with the identity line where each
point corresponds to the median of 5 sets of ordered residuals; Right panel: Cure fraction stratified by nodule

category and tumor thickness, for the MOGG mixture model. MOGG =Marshall-Olkin generalized gamma.

Table 6: Survivor probability of patients after five years for various nodal categories stratified by treatment

Treatment Nodal category MLE Standard error 95% confidence interval
LL RL

Observation

1 0.592 0.108 0.381 0.802
2 0.443 0.088 0.271 0.615
3 0.333 0.108 0.122 0.543
4 0.267 0.130 0.012 0.522

Interferon alfa-2b

1 0.627 0.136 0.361 0.893
2 0.492 0.106 0.283 0.701
3 0.391 0.157 0.084 0.699
4 0.331 0.103 0.129 0.533

MLE = maximum likelihood estimates; LL = lower limit; UL = upper limit.
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Figure 8: Surviving function of patients stratified by ulceration status stratified by nodal category (from 1 to 4)
with median tumor thickness (3.175 mm) and treatment (left panel: observation; right panel:interferon alfa-2b).
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7. Conclusion

In this paper, we define a new lifetime model named the Marshall-Olkin generalized gamma (MOGG)
distribution as an extension of the generalized gamma distribution (Stacy, 1962). The proposed model
includes twenty one special models. Some structural properties of the proposed distribution are pro-
vided such as moments, quantile and generating functions. We base the inference on maximum like-
lihood estimation. We also define a MOGG mixture model for the analysis of lifetime data with cure
fraction. Two simulation studies are presented to investigate some finite sample properties of the max-
imum likelihood estimates. The MOGG mixture model can be seen as a model of competing causes,
where activation mechanism of the causes is controlled by a parameter of the model. We apply the
new models to two real data sets to illustrate their potentiality.
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