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Abstract
In this paper, we derive maximum likelihood estimators (MLEs) and approximate maximum likelihood esti-

mators (AMLEs) of unknown parameters in a generalized half logistic distribution under Type-II hybrid censor-
ing. We also obtain approximate confidence intervals using asymptotic variance and covariance matrices based
on the MLEs and the AMLEs. As an illustration, we examine the validity of the proposed estimation using real
data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE), bias, and length
of the approximate confidence interval through a Monte Carlo simulation for various censoring schemes.

Keywords: Approximate maximum likelihood estimator, generalized half logistic distribution, type-
II hybrid censoring.

1. Introduction

Half logistic distribution has been used in many reliability and survival analysis (especially when the
data is censored). Inferences for the half logistic distribution have been discussed by several authors.
Balakrishnan and Puthenpura (1986) introduced the best linear unbiased estimators of location and
scale parameters of the half logistic distribution through linear functions of order statistics. Balakr-
ishnan and Wong (1991) obtained AMLEs for the location parameter and the scale parameter of the
half logistic distribution with Type-II right censored samples. Kang et al. (2008) derived the AMLEs
and MLE of the scale parameter in a half logistic distribution based on progressively Type-II censored
samples. Kang et al. (2009) proposed the AMLEs of the scale parameter in a half logistic distribution
based on double hybrid censored samples. Recently, Arora et al. (2010) obtained the MLE and its
asymptotic variance of the generalized half logistic distribution under Type-I progressive censoring
with changing failure rates. They also provided some results including total expected waiting time in
case of interval censoring schemes. Kim et al. (2011b) proposed the Bayes estimators of the shape
parameter and reliability function in the generalized half logistic distribution based on progressively
Type-II censored data under the various loss functions.

The cumulative distribution function (cdf) and the probability density function (pdf) of the random
variable X having the generalized half logistic distribution are given by

F(x) = 1 −
(

2e−
x
σ

1 + e−
x
σ

)λ
(1.1)

1 Corresponding author: Professor, Department of Statistics, Yeungnam University, Gyeongsan 712-749, Korea.
E-mail: sbkang@yu.ac.kr



64 Jung-In Seo, Yongku Kim, Suk-Bok Kang

and

f (x) =
λ

σ

(
2e−

x
σ

1 + e−
x
σ

)λ 1
1 + e−

x
σ

, x > 0, λ, σ > 0, (1.2)

where σ is scale parameter and λ is shape parameter. As a special case, if λ = 1, this is the half
logistic distribution. From (1.1), the nth moment of the generalized half logistic distribution with
scale parameter σ and shape parameter λ can be written as

E(Xn) =
∫ ∞

0
nxn−1 (1 − F(x)) dx

= 2λn
∫ ∞

0
xn−1e−x( λ

σ ) (
1 + e−

x
σ

)−λ
dx

= 2λn
∞∑

i=0

(−1)i
(

i + λ − 1
i

) ∫ ∞

0
xn−1e−x( λ+i

σ )dx

= 2λσnΓ(n + 1)
∞∑

i=0

(−1)i
(

i + λ − 1
i

)
(λ + i)−n.

In many cases, the maximum likelihood estimation method does not provide explicit estimators
based on complete and censored samples. Hence it is desirable to develop an approximation to this
estimation method which would provide estimators that are explicit functions of order statistics. The
approximate maximum likelihood estimation method was first developed by Balakrishnan (1989) in
order to provide explicit estimators of the scale parameter in the Rayleigh distribution. Lin et al.
(2006) discussed MLEs of the parameters of the log-gamma distribution based on progressively Type-
II censored samples, and they derived AMLEs of the parameters and used them as initial values in
the determination of the MLEs through the Newton-Raphson method. Seo and Kang (2007) derived
AMLEs for Rayleigh distribution based on progressively Type-II censored data. Han and Kang (2008)
derived AMLEs of the scale parameter and the location parameter in a double Rayleigh distribution
based on multiply Type-II censored samples.

The most commonly used censoring schemes are Type-I and Type-II censoring schemes. In
the conventional Type-I censoring scheme, the experiment continues up to a pre-specified time T .
However, the conventional Type-II censoring scheme requires the experiment to continue until a pre-
specified number of failures r ≤ n occur without replacement. The mixture of Type-I and Type-II
censoring schemes is known as a hybrid censoring scheme. Epstein (1954) first introduced Type-I
hybrid censoring scheme, and considered lifetime experiments assuming that the lifetime of each unit
follows an exponential distribution. Kundu (2007) developed MLEs and AMLEs for the unknown
parameters under Type-I hybrid censoring. He also obtained Bayes estimators and corresponding
highest posterior density credible intervals of the unknown parameters under suitable priors on the
unknown parameters and using the Gibbs sampling procedure. Recently, Kang et al. (2009) de-
rived some estimators of the scale parameter of the half triangle distribution based on Type-I hybrid
censored samples. Kim et al. (2011a) suggested Bayes estimators for an exponentiated half-triangle
distribution based on Type-I hybrid censoring. Under Type-I hybrid censoring scheme, the experiment
is terminated at a random time T ∗ = min{Xr:n, T }, where X1:n < X2:n < · · · < Xn:n and T ∈ (0,∞).
Note that there may be few or no observed failures provided T is small. Childs et al. (2003) proposed
a Type-II hybrid censoring scheme to cover the disadvantage of Type-I hybrid censoring scheme.
Banerjee and Kundu (2008) developed MLEs and AMLEs and discussed various Bayesian estimation
methods of the two-parameter Weibull distribution under Type-II hybrid censoring.
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2. Maximum Likelihood Estimation

In this section, we develop MLEs of the unknown parameters in the generalized half logistic distri-
bution under Type-II hybrid censored data. Let X1:n, X2:n, . . . , Xn:n be the order statistics of random
samples X1, X2, . . . , Xn. Under Type-II hybrid censoring, the experiment is terminated at a random
time T ∗ = max{Xr:n,T }, where 1 ≤ r ≤ n and T ∈ (0,∞) for fixed r and T . In this case, we have one
of the following types of observations:

Case I : x1:n < · · · < xr:n if xr:n > T

1st Failure 2nd Failure th Failure (Experiment Stops)r

n
x

:1 n
x

:2 nr
x

:T

Case II : x1:n < · · · < xr:n < · · · < xm:n < T < xm+1:n where r ≤ m < n

1st Failure 2nd Failure m

n
x

:1 n
x

:2
nm

x
: T

th Failure Experiment Stops

Case III : x1:n < · · · < xn:n < T

1st Failure 2nd Failure

n
x

:1 n
x

:2 nn
x

: T

th Failure (Experiment Stops)n

Hence, the likelihood functions for the above cases are given by

Case I : L =
n!

(n − r)!
[1 − F(xr:n)]n−r

r∏
i=1

f (xi:n), T < Xr:n, (2.1)

Case II : L =
n!

(n − m)!
[1 − F(T )]n−m

m∏
i=1

f (xi:n), r ≤ m < n, Xm:n ≤ T < Xm+1:n, (2.2)

Case III : L = n!
n∏

i=1

f (xi:n), Xn:n < T. (2.3)
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Combining these cases, we can obtain the following likelihood function

L =
n!

(n − s)!
[1 − F(U)]n−s

s∏
i=1

f (xi:n), (2.4)

where s denotes the number of failures. So U = xr:n if s = r in Case I, and U = T if s > r in Case II.
For simplicity, we denote order statistics x1:n, x2:n, . . . , xn:n by x1, x2, . . . , xn.

It follows, from (1.1), (1.2), and (2.4), that

L =
n!

(n − s)!

(
λ

σ

)s  2e−
U
σ

1 + e−
U
σ

λ(n−s) s∏
i=1

 2e−
xi
σ

1 + e−
xi
σ

λ 1

1 + e−
xi
σ

. (2.5)

The natural logarithm of the likelihood function (2.5) is given by

log L ∝ s log λ − s logσ + λ(n − s) log
 2e−

U
σ

1 + e−
U
σ

 + λ s∑
i=1

log
 2e−

xi
σ

1 + e−
xi
σ

 − s∑
i=1

log
(
1 + e−

xi
σ

)
. (2.6)

From (2.6), we have the likelihood equations for σ and λ as

∂ log L
∂σ

= − 1
σ

s − λ(n − s)G1(σ; U)
U
σ
− λ

s∑
i=1

G1(σ; xi)
xi

σ
+

s∑
i=1

(1 −G1(σ; xi))
xi

σ


= 0 (2.7)

and

∂ log L
∂λ

=
s
λ
+ (n − s)G2(σ; U) +

s∑
i=1

G2(σ; xi)

= 0, (2.8)

where

G1(σ; xi) =
1

1 + e−
xi
σ

,

G2(σ; xi) = log
 2e−

xi
σ

1 + e−
xi
σ

 .
Assuming that the scale parameter σ is known, the MLE of the shape parameter λ can be obtained

as

λ̂(σ) = − s
(n − s)G2(σ; U) +

∑s
i=1 G2(σ; xi)

. (2.9)

If the scale parameter σ is unknown, we can find the MLEs of σ and λ by simultaneously solving
the Equation (2.7) and Equation (2.8). Unfortunately, since the Equation (2.7) cannot be solved ex-
plicitly, it may be solved by using the Newton-Raphson method that performs nonlinear optimization.
The MLEs of σ and λ are denoted by σ̂ and λ̂, respectively.
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3. Approximate Maximum Likelihood Estimation

As mentioned earlier, because the Equation (2.7) is very complicated, it does not admit an explicit
solution for σ. Therefore, we will derive some AMLEs of σ by using the approximate likelihood
equations in this section.

Let Zi = Xi/σ and V = U/σ. The likelihood Equation (2.7) can be written as

∂ log L
∂σ

= − 1
σ

s − λ(n − s)
1

1 + e−V V − (λ + 1)
s∑

i=1

1
1 + e−zi

zi +

s∑
i=1

zi


= 0. (3.1)

Suppose pi = i/(n + 1) and qi = 1 − pi for i = 1, 2, . . . , n. Then, ξi = F−1(pi) = (−1/σ) log(q1/λ
i /

(2 − q1/λ
i )). To obtain the approximate likelihood equation, we first approximate the following func-

tions using Taylor series when U = xr (s = r):

1
1 + e−V ≃ α1r + β1rzr, (3.2)

1
1 + e−zi

≃ α1i + β1izi, (3.3)

where

α1i =

(
1 − 1

2
q

1
λ

i

) (
1 − 1

2
q

1
λ

i ξi

)
,

β1i =
1
4

q
1
λ

i

(
2 − q

1
λ

i

)
.

Putting the Equation (3.2) and Equation (3.3) into the Equation (3.1), we obtain the following
approximate likelihood equation

∂ log L
∂σ

≃ − 1
σ

r − λ(n − r) (α1r + β1rzr) zr − (λ + 1)
r∑

i=1

(α1i + β1izi) zi +

r∑
i=1

zi


= 0. (3.4)

After solving the quadratic equation (3.4) for σ, we obtain AMLE of σ as

σ̃1 =
A +
√

A2 + 4rB
2r

, (3.5)

where

A =
r∑
i

xi

((
λ̂ + 1

)
α1i − 1

)
+ λ̂xr(n − r)α1r,

B =
r∑
i

x2
i

(
λ̂ + 1

)
β1i + λ̂x2

r (n − r)β1r.
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If U = T (s > r), instead of ξr, defining ξm∗ = − log(q1/λ
m∗ /(2 − q1/λ

m∗ )) for pm∗ = (pm + pm+1)/2 and
qm∗ = 1 − pm∗ (r ≤ m < n), the AMLE of σ in (3.5) is written as

σ̃1 =
A +
√

A2 + 4mB
2m

, (3.6)

where

A =
m∑
i

xi

((
λ̂ + 1

)
α1i − 1

)
+ λ̂T (n − m)α1m∗ ,

B =
m∑
i

x2
i

(
λ̂ + 1

)
β1i + λ̂T 2(n − m)β1m∗ .

Note that σ̃1 is always positive because β1i > 0. In addition, we obtain the AMLE of the shape
parameter λ, denoted by λ̃1, by replacing σ with σ̃1 in the Equation (2.9).

In the same way, for U = xr (s = r), we approximate the other functions as follows:

1
1 + e−V V ≃ α2r + β2rzr, (3.7)

1
1 + e−zi

zi ≃ α2i + β2izi, (3.8)

where

α2i =
1
4

q
1
λ

i

(
q

1
λ

i − 2
)
ξ2

i ,

β2i =

(
1 − 1

2
q

1
λ

i

) (
1 +

1
2

q
1
λ

i ξi

)
.

By using the Equation (3.7) and Equation (3.8), we obtain the following approximate likelihood equa-
tion

∂ log L
∂σ

≃ − 1
σ

r − λ(n − r) (α2r + β2rzr) − (λ + 1)
r∑

i=1

(α2i + β2izi) +
r∑

i=1

zi


= 0. (3.9)

After solving the Equation (3.9) for σ, we obtain another AMLE of σ as

σ̃2 =
C

r − D
, (3.10)

where

C =
r∑

i=1

xi

((
λ̂ + 1

)
β2i − 1

)
+ λ̂xr(n − r)β2r,

D =
r∑

i=1

(
λ̂ + 1

)
α2i + λ̂(n − r)α2r.
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If U = T (s > r), the AMLE of σ in (3.10) is written as

σ̃2 =
C

m − D
, (3.11)

where

C =
m∑

i=1

xi

((
λ̂ + 1

)
β2i − 1

)
+ λ̂T (n − m)β2m∗ ,

D =
m∑

i=1

(
λ̂ + 1

)
α2i + λ̂(n − m)α2m∗ .

In this case, (λ + 1)β2i − 1 is positive when λ > e−ξi . Therefore, we know that σ̃2 is positive under
the same condition. Another AMLE of λ, denoted by λ̃2, is also obtained by replacing σ with σ̃2 in
the Equation (2.9). Note that the estimator σ̃2 is simpler than the estimator σ̃1 because σ̃2 is a linear
combination of available order statistics.

4. Fisher Information

To construct confidence intervals, it is necessary to compute variance and covariance matrix of the
estimators, which is given by the inverse of the Fisher information matrix.

From the Equation (2.6), we have

−∂
2 log L
∂σ2 = − 1

σ2

s − λ(n − s)G3(σ; U) − λ
s∑

i=1

G3(σ; xi) −
s∑

i=1

G4(σ; xi)

 , (4.1)

−∂
2 log L
∂σ∂λ

= − 1
σ

(n − s)G1(σ; U)
U
σ
+

s∑
i=1

G1(σ; xi)
xi

σ

 , (4.2)

−∂
2 log L
∂λ2 =

s
λ2 , (4.3)

where

G3(σ; xi) = G1(σ; xi)
xi

σ

[
(1 −G1(σ; xi))

xi

σ
+ 2

]
,

G4(σ; xi) = (1 −G1(σ; xi))
xi

σ

(
G1(σ; xi)

xi

σ
− 2

)
.

Then, by taking expectations of the (4,1), (4.2), and (4.3), we can obtain the Fisher information matrix
for the MLEs σ̂ and λ̂ as

I
(
σ̂, λ̂

)
= E


−∂

2 log L
∂σ2 −∂

2 log L
∂σ∂λ

−∂
2 log L
∂λ∂σ

−∂
2 log L
∂λ2

 . (4.4)

In this case, it is complicated to calculate the exact expected values in the Fisher information matrix
(4.4). Therefore we derive the asymptotic variance-covariance matrix by using the observed Fisher
information matrix.
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The asymptotic variance-covariance matrix of the MLEs σ̂ and λ̂ is given by

Σ̂ =


−∂

2 log L
∂σ2 −∂

2 log L
∂σ∂λ

−∂
2 log L
∂λ∂σ

−∂
2 log L
∂λ2


−1

(σ, λ)=(σ̂, λ̂)

=

 θ̂2
σ θ̂σ, λ

θ̂λ, σ θ̂2
λ

 . (4.5)

By the asymptotic normality of the MLE, we can obtain the approximate confidence intervals of the
scale parameter σ and the shape parameter λ to be

σ̂ ± z α
2

√
θ̂2
σ and λ̂ ± z α

2

√
θ̂2
λ , (4.6)

where zα/2 denotes the upper α/2 point of the standard normal distribution.
We apply the same argument to obtain the approximate confidence intervals of the AMLEs of the

scale parameter σ and the shape parameter λ.
For U = xr, the elements of the observed Fisher information matrix for AMLEs σ̃1 and λ̃1 are

obtained as

∂2 log L
∂σ2 ≃ 1

σ2

r − λ(n − r)
(
2α1r + 3β1r

xr

σ

) xr

σ
− (λ + 1)

r∑
i=1

(
2α1i + 3β1i

xi

σ

) xi

σ
+ 2

r∑
i=1

xi

σ

 , (4.7)

∂2 log L
∂σ∂λ

≃ 1
σ

[
(n − r)

(
α1r + λγ1r + (β1r + λδ1r)

xr

σ

) xr

σ

+

r∑
i=1

(
α1i + (λ + 1)γ1i + (β1i + (λ + 1)δ1i)

xi

σ

) xi

σ

 , (4.8)

where

γ1i =
1

2λ2 q
1
λ

i

(
1 − q

1
λ

i

)
(log qi) ξi,

δ1i =
1

2λ2 q
1
λ

i

(
q

1
λ

i − 1
)

(log qi).

In the above elements, If U = T , then

∂2 log L
∂σ2 ≃ 1

σ2

m − λ(n − m)
(
2α1m∗ + 3β1m∗

T
σ

) T
σ
− (λ + 1)

m∑
i=1

(
2α1i + 3β1i

xi

σ

) xi

σ
+ 2

m∑
i=1

xi

σ

 , (4.9)

∂2 log L
∂σ∂λ

≃ 1
σ

[
(n − m)

(
α1m∗ + λγ1m∗ + (β1m∗ + λδ1m∗)

T
σ

) T
σ

+

m∑
i=1

(
α1i + (λ + 1)γ1i + (β1i + (λ + 1)δ1i)

xi

σ

) xi

σ

 . (4.10)

Also, for the another AMLEs σ̃2 and λ̃2 when U = xr, the elements of the observed Fisher
information matrix are obtained as

∂2 log L
∂σ2 ≃ 1

σ2

r − λ(n − r)
(
α2r + 2β2r

xr

σ

)
− (λ + 1)

r∑
i=1

(
α2i + 2β2i

xi

σ

)
+ 2

r∑
i=1

xi

σ

 , (4.11)



Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring 71

Table 1: Failure log times to breakdown of an insulating fluid testing experiment.
0.270027 1.02245 1.15057 1.42311 1.54116 1.57898 1.8718 1.9947
2.08069 2.11263 2.48989 3.45789 3.48186 3.52371 3.60305 4.28895

Table 2: Critical values and test statistic (p-value) for Kolmogorov test.
(σ̂, λ̂) (σ̃1, λ̃1) (σ̃2, λ̃2)

Estimates (1.14089, 0.68809) (1.14019, 0.68758) (1.14118, 0.68830)
Critical value (α = 0.05) 0.35390 0.35390 0.35390

Test statistic Dn (p-value) 0.25036 (0.226) 0.25035 (0.226) 0.25036 (0.226)

∂2 log L
∂σ∂λ

≃ 1
σ

(n−r)
(
α2r+λγ2r+(β2r+λδ2r)

xr

σ

)
+

r∑
i=1

(
α2i+(λ + 1)γ2i+(β2i+(λ+1)δ2i)

xi

σ

) , (4.12)

where

γ2i =
1

2λ2 q
1
λ

i (log qi)
((

1 − q
1
λ

i

)
ξi − 2

)
ξi,

δ2i =
1

2λ2 q
1
λ

i (log qi)
((

q
1
λ

i − 1
)
ξi + 2

)
.

In the above elements, if U = T , then

∂2 log L
∂σ2 ≃ 1

σ2

m − λ(n − m)
(
α2m∗ + 2β2m∗

T
σ

)
− (λ + 1)

m∑
i=1

(
α2i + 2β2i

xi

σ

)
+ 2

m∑
i=1

xi

σ

 , (4.13)

∂2 log L
∂σ∂λ

≃ 1
σ

(n−m)
(
α2m∗+λγ2m∗+(β2m∗+λδ2m∗)

T
σ

)
+

m∑
i=1

(
α2i+(λ+1)γ2i+(β2i+(λ+1)δ2i)

xi

σ

) . (4.14)

Note that we use the Equation (4.3) as a value of the second partial derivative of the logarithm of
the likelihood function for the shape parameter λ in the observed Fisher information matrix for the
two types of AMLEs.

5. Illustrative Example

In this section, we present an example to illustrate our estimation methods and assess the performance
of the estimators discussed in the previous sections.

5.1. Real data

We consider the failure log times to breakdown of an insulating fluid testing experiment (Nelson,
1982 and see Table 1). This data has been utilized by many authors, such as Balakrishnan and Kannan
(2001), Balakrishnan et al. (2004), and Kim et al. (2011b). We apply the Kolmogorov test to examine
whether the data follow a generalized half logistic distribution with the unknown scale and shape
parameters. We first calculate the MLEs and the AMLEs of the unknown parameters σ and λ for
uncensored data; subsequently, using these results, we create the critical values for the Kolmogorov
test statistic for a generalized half logistic distribution by Monte Carlo method. Finally, we obtain the
values of the Kolmogorov test statistics Dn and associated p-values. These values are given in Table
2. Since all the critical values at the significance level of α = 0.05 exceed the corresponding values of
the test statistics, we can conclude that the data follow a generalized half logistic distribution.
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Table 3: MLEs, AMLEs, and their standard deviations (SD) for real data.
σ̂ σ̃1 σ̃2

Estimates 0.83449 0.84257 0.84059
SD 0.12050 0.11987 0.11946

λ̂ λ̃1 λ̃2
Estimates 0.40709 0.41278 0.41160

SD 0.12744 0.12617 0.12530

Table 4: The mean squared errors and biases for the estimators of the scale parameter σ and the shape
parameter λ.

MSE(bias)
T r (n = 30) σ̂ σ̃1 σ̃2

3.0 26 0.03388(0.02111) 0.02838(0.00997) 0.02596(−0.07042)
28 0.03265(0.02009) 0.02796(0.00951) 0.02595(−0.07044)

3.5 26 0.03182(0.01162) 0.02767(0.00521) 0.02580(−0.07174)
28 0.03161(0.01150) 0.02761(0.00516) 0.02580(−0.07174)

4.0 26 0.03013(0.00550) 0.02697(0.00207) 0.02570(−0.07219)
28 0.02995(0.00541) 0.02691(0.00203) 0.02570(−0.07219)

T r (n = 40) σ̂ σ̃1 σ̃2

3.0 36 0.02447(0.01864) 0.02117(0.00917) 0.02082(−0.06910)
38 0.02327(0.01717) 0.02072(0.00849) 0.02079(−0.06917)

3.5 36 0.02334(0.01074) 0.02075(0.00512) 0.02071(−0.07057)
38 0.02311(0.01053) 0.02067(0.00502) 0.02071(−0.07057)

4.0 36 0.02198(0.00432) 0.02018(0.00172) 0.02065(−0.07118)
38 0.02180(0.00419) 0.02012(0.00166) 0.02065(−0.07119)

T r (n = 30) λ̂ λ̃1 λ̃2

3.0 26 0.05466(0.07430) 0.02181(0.04685) 0.02567(−0.14376)
28 0.04974(0.07129) 0.02012(0.04508) 0.02558(−0.14455)

3.5 26 0.04103(0.04212) 0.01656(0.02623) 0.02769(−0.15507)
28 0.04015(0.04175) 0.01627(0.02601) 0.02767(−0.15516)

4.0 26 0.03182(0.02191) 0.01280(0.01318) 0.02870(−0.16120)
28 0.03113(0.02167) 0.01257(0.01305) 0.02868(−0.16126)

T r (n = 40) λ̂ λ̃1 λ̃2

3.0 36 0.03294(0.06535) 0.01358(0.04225) 0.02374(−0.14330)
38 0.02787(0.06094) 0.01172(0.03957) 0.02373(−0.14452)

3.5 36 0.02501(0.03880) 0.01049(0.02506) 0.02594(−0.15336)
38 0.02428(0.03816) 0.01021(0.02467) 0.02594(−0.15353)

4.0 36 0.01717(0.01777) 0.00725(0.01132) 0.02721(−0.15991)
38 0.01644(0.01741) 0.00700(0.01111) 0.02720(−0.16000)

In this example, we consider censoring scheme T = 2.5 and r = 10 (that is, s = 11 and U = 2.5).
Using the formulas in Section 2 and Section 3, we obtain the MLEs and the AMLEs for the scale
parameter σ and the shape parameter λ. Standard deviations of these estimators are computed using
the observed Fisher information matrices that were illustrated in the Section 4. These values are
given in Table 3. From the table, we can see that all the estimators have nearly the same values
for considered scheme. In addition, it is observed that the standard deviation of σ̃2 has the smallest
value for the scale parameter σ and the standard deviation of λ̃2 has the smallest value for the shape
parameter λ.

5.2. Simulation study
To compare the performance of the proposed estimators, we simulate the MSEs, the biases, and the
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Table 5: The average lengths of the 95%(90%) approximate confidence intervals of the MLEs and AMLEs.
95%(90%)

T r (n = 30) σ̂ σ̃1 σ̃2

3.0 26 0.76425(0.64472) 0.71108(0.59986) 0.62845(0.53016)
28 0.75225(0.63459) 0.70662(0.59610) 0.62827(0.53000)

3.5 26 0.74657(0.62980) 0.70416(0.59402) 0.62418(0.52655)
28 0.74448(0.62804) 0.70354(0.59350) 0.62425(0.52661)

4.0 26 0.73028(0.61605) 0.69690(0.58790) 0.62219(0.52487)
28 0.72838(0.61445) 0.69626(0.58736) 0.62215(0.52484)

T r (n = 40) σ̂ σ̃1 σ̃2

3.0 36 0.66514(0.56110) 0.62941(0.53097) 0.56524(0.47683)
38 0.65181(0.54986) 0.62411(0.52650) 0.56469(0.47637)

3.5 36 0.65478(0.55236) 0.62505(0.52728) 0.56102(0.47327)
38 0.65214(0.55014) 0.62407(0.52646) 0.56104(0.47329)

4.0 36 0.63991(0.53982) 0.61834(0.52162) 0.55902(0.47159)
38 0.63780(0.53804) 0.61763(0.52102) 0.55900(0.47156)

T r (n = 30) λ̂ λ̃1 λ̃2

3.0 26 0.90709(0.76521) 0.61145(0.51581) 0.38931(0.32842)
28 0.86872(0.73284) 0.59207(0.49946) 0.38302(0.32311)

3.5 26 0.82005(0.69179) 0.56296(0.47490) 0.36179(0.30520)
28 0.81218(0.68515) 0.55916(0.47170) 0.36068(0.30426)

4.0 26 0.74311(0.62688) 0.51722(0.43632) 0.34164(0.28821)
28 0.73605(0.62092) 0.51395(0.43356) 0.34079(0.28749)

T r (n = 40) λ̂ λ̃1 λ̃2

3.0 36 0.71524(0.60337) 0.50484(0.42588) 0.35256(0.29742)
38 0.66554(0.56144) 0.47949(0.40449) 0.34458(0.29069)

3.5 36 0.65806(0.55513) 0.47477(0.40051) 0.33506(0.28266)
38 0.65004(0.54837) 0.47070(0.39707) 0.33385(0.28163)

4.0 36 0.57609(0.48599) 0.42869(0.36164) 0.31692(0.26735)
38 0.56649(0.47788) 0.42433(0.35796) 0.31584(0.26644)

average lengths of the approximate confidence intervals of all derived estimators through a Monte
Carlo simulation method. By modifying the original algorithm presented in Balakrishnan and Sandhu
(1995), we generate Type-II hybrid censored data from the standard generalized half logistic distribu-
tion when the shape parameter λ = 2. The modified algorithm has the following steps:

(1) Generate n independent U(0, 1) random variables W1,W2, . . . ,Wn.

(2) Set Vi = W1/i
i for i = 1, 2, . . . , n.

(3) Set Ui = 1 − (VnVn−1 · · ·Vn−i+1) for i = 1, 2, . . . , n. Then U1 < U2 < · · · < Un are data of size n
from U(0, 1).

(4) For λ = 2, set Xi = F−1(Ui) = − log[(1 − Ui)
1/λ
i /{2− (1−Ui)

1/λ
i }], i = 1, 2, . . . , n. Then X1 < X2 <

· · · < Xn are data of size n from the standard generalized half logistic distribution when the shape
parameter λ = 2.

(5) Choose Type-II hybrid censoring scheme T and r.

For sample size n = 30 and 40, we calculate the MLEs and AMLEs and obtain the correspond-
ing 95% approximate confidence intervals and 90% approximate confidence intervals using the data
obtained above. By repeating this procedure 10,000 times, we obtain the MSEs and the biases of the
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MLEs and AMLEs. In addition, we obtain the average lengths of the 95% and 90% approximate con-
fidence intervals of the MLEs and AMLEs for σ and λ. These values are given in Table 4 and Table
5. From the tables, we can see that the MSEs decrease as r increases for the considered cases. Except
for the AMLE λ̃2, the MSEs decrease as T increases; in addition, the AMLEs are more efficient than
their corresponding MLEs for both of the unknown parameters σ and λ. For the scale parameter σ,
the AMLE σ̃2 is generally superior to the AMLE σ̃1. For the shape parameter λ, the AMLE λ̃1 show
an overall better performance than the another AMLE λ̃2. Furthermore, the length of the 95% approx-
imate confidence intervals of the AMLEs are smaller than that of the 95% approximate confidence
intervals of the MLEs for both of the unknown parameters σ and λ, especially in the AMLEs σ̃2 and
λ̃2. We have the same results for the 90% approximate confidence intervals.

6. Concluding Remarks

This paper develops the MLEs of the scale and shape parameters in a generalized half logistic distri-
bution under Type-II hybrid censoring. The MLE of the scale parameter cannot be explicitly solved
and we therefore propose two types of AMLEs as an alternative. We can obtain the AMLEs by solv-
ing the approximate likelihood equations, and their standard deviations by using the observed Fisher
information matrices. We compared these estimators through a Monte Carlo simulation. Our results
show that the AMLEs are superior to their corresponding MLEs for the considered cases. That is, the
AMLEs take a closed form, and besides they outperform the corresponding MLEs. Therefore we can
recommend the use of the AMLEs.
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