• 제목/요약/키워드: generalized exponential

검색결과 146건 처리시간 0.025초

Parameters Estimators for the Generalized Exponential Distribution

  • Abuammoh, A.;Sarhan, A.M.
    • International Journal of Reliability and Applications
    • /
    • 제8권1호
    • /
    • pp.17-25
    • /
    • 2007
  • Maximum likelihood method is utilized to estimate the two parameters of generalized exponential distribution based on grouped and censored data. This method does not give closed form for the estimates, thus numerical procedure is used. Reliability measures for the generalized exponential distribution are calculated. Testing the goodness of fit for the exponential distribution against the generalized exponential distribution is discussed. Relevant reliability measures of the generalized exponential distributions are also evaluated. A set of real data is employed to illustrate the results given in this paper.

  • PDF

On the Estimation of Parameters in ALT under Generalized Exponential Distribution

  • Yoon, Sang-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.923-931
    • /
    • 2005
  • The two parameter generalized exponential distribution was recently introduced by Gupta and Kundu (1999). It is observed that the generalized exponential distribution can be used quite effectively to analyze skewed data set. This paper develops the accelerated life test model using generalized exponential distribution and considers maximum likelihood estimation of parameters under the tampered random variable model. To show the performance of proposed maximum likelihood estimates, some simulation will be performed. Using a real data set, an example will be given.

  • PDF

Estimation for Two-Parameter Generalized Exponential Distribution Based on Records

  • Kang, Suk Bok;Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • 제20권1호
    • /
    • pp.29-39
    • /
    • 2013
  • This paper derives maximum likelihood estimators (MLEs) and some approximate MLEs (AMLEs) of unknown parameters of the generalized exponential distribution when data are lower record values. We derive approximate Bayes estimators through importance sampling and obtain corresponding Bayes predictive intervals for unknown parameters for lower record values from the generalized exponential distribution. For illustrative purposes, we examine the validity of the proposed estimation method by using real and simulated data.

GENERALIZED FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS FOR EXPONENTIAL TYPE FUNCTIONS OF GENERALIZED BROWNIAN MOTION PATHS

  • Jae Gil Choi
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1141-1151
    • /
    • 2023
  • Let Ca,b[0, T] denote the space of continuous sample paths of a generalized Brownian motion process (GBMP). In this paper, we study the structures which exist between the analytic generalized Fourier-Feynman transform (GFFT) and the generalized convolution product (GCP) for functions on the function space Ca,b[0, T]. For our purpose, we use the exponential type functions on the general Wiener space Ca,b[0, T]. The class of all exponential type functions is a fundamental set in L2(Ca,b[0, T]).

GENERALIZED SOBOLEV SPACES OF EXPONENTIAL TYPE

  • Lee, Sungjin
    • Korean Journal of Mathematics
    • /
    • 제8권1호
    • /
    • pp.73-86
    • /
    • 2000
  • We study the Sobolev spaces to the generalized Sobolev spaces $H^s_{\mathcal{G}}$ of exponential type based on the Silva space $\mathcal{G}$ and investigate its properties such as imbedding theorem and structure theorem. In fact, the imbedding theorem says that for $s$ > 0 $u{\in}H^s_{\mathcal{G}}$ can be analytically continued to the set {$z{\in}\mathbb{C}^n{\mid}{\mid}Im\;z{\mid}$ < $s$}. Also, the structure theorem means that for $s$ > 0 $u{\in}H^{-s}_{\mathcal{G}}$ is of the form $$u={\sum_{\alpha}\frac{s^{{|\alpha|}}}{{\alpha}!}D^{\alpha}g{\alpha}$$ where $g{\alpha}$'s are square integrable functions for ${\alpha}{\in}\mathbb{N}^n_0$. Moreover, we introduce a classes of symbols of exponential type and its associated pseudo-differential operators of exponential type, which naturally act on the generalized Sobolev spaces of exponential type. Finally, a generalized Bessel potential is defined and its properties are investigated.

  • PDF

Power Exponential Distributions

  • Zheng, Shimin;Bae, Sejong;Bartolucci, Alfred A.;Singh, Karan P.
    • International Journal of Reliability and Applications
    • /
    • 제4권3호
    • /
    • pp.97-111
    • /
    • 2003
  • By applying Theorem 2.6.4 (Fang and Zhang, 1990, p.66) the dispersion matrix of a multivariate power exponential (MPE) distribution is derived. It is shown that the MPE and the gamma distributions are related and thus the MPE and chi-square distributions are related. By extending Fang and Xu's Theorem (1987) from the normal distribution to the Univariate Power Exponential (UPE) distribution an explicit expression is derived for calculating the probability of an UPE random variable over an interval. A representation of the characteristic function (c.f.) for an UPE distribution is given. Based on the MPE distribution the probability density functions of the generalized non-central chi-square, the generalized non-central t, and the generalized non-central F distributions are derived.

  • PDF

EQUIDISTRIBUTION OF HIGHER DIMENSIONAL GENERALIZED DEDEKIND SUMS AND EXPONENTIAL SUMS

  • Chae, Hi-joon;Jun, Byungheup;Lee, Jungyun
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.845-871
    • /
    • 2020
  • We consider generalized Dedekind sums in dimension n, defined as sum of products of values of periodic Bernoulli functions. For the generalized Dedekind sums, we associate a Laurent polynomial. Using this, we associate an exponential sum of a Laurent polynomial to the generalized Dedekind sums and show that this exponential sum has a nontrivial bound that is sufficient to fulfill the equidistribution criterion of Weyl and thus the fractional part of the generalized Dedekind sums are equidistributed in ℝ/ℤ.

SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE

  • Lee, Young-Whan
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.357-369
    • /
    • 2008
  • We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: $$|\frac{f(x+y)}{(E(x,y)g(x)f(y)}-1|{\leq}{\varphi}(x,y)$$ where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.

A NEW APPROACH TO EXPONENTIAL STABILITY ANALYSIS OF NONLINEAR SYSTEMS

  • WAN ANHUA
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.345-351
    • /
    • 2005
  • An effective method for analyzing the stability of nonlinear systems is developed. After introducing a novel concept named the point- wise generalized Dahlquist constant for any mapping and presenting its useful properties, we show that the point-wise generalized Dahlquist constant is sufficient for characterizing the exponential stability of nonlinear systems.