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Abstract. Maximum likelihood method is utilized to estimate the two
parameters of generalized exponential distribution based on grouped and
censored data. This method does not give closed form for the estimates,
thus numerical procedure is used. Reliability measures for the gener-
alized exponential distribution are calculated. Testing the goodness of
fit for the exponential distribution against the generalized exponential
distribution is discussed. Relevant reliability measures of the general-
ized exponential distributions are also evaluated. A set of real data is
employed to illustrate the results given in this paper.
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ACRONYMS
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pdf probability density function
sf survival function
MLE maximum likelihood estimate
CL confidence interval
GED(«, ) generalized exponential distribution with parameters o, 3
ED(a) exponential distribution with parameter o
MTTF mean time to failure
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1. INTRODUCTION

Tests, in reliability analysis, can be performed for units or systems either con-
tinuously or intermittently inspection for failure. If the life test can be based on
continuous inspection throughout the experiment, then the sample life lengths, i.e.
data, is said to be complete. In other hand, the data from intermittent inspections
are known by grouped data. The number of failures expresses this data in each in-
spection interval is used more frequently than the first one, since it, generally, costs
less and requires fewer efforts. Moreover, intermittent inspections is some times the
only possible or available for units or their system, Ehrenfeld (1962).

It is known that the exponential distribution, GE(«), is the most frequently used
distribution in reliability theory and applications. The mean and its confidence limit
of this distribution have been estimated based on group and censored data by Seo
and Yum(1993) and Chen and Mi (1996), respectively.

Recently the generalized exponential distribution GED(q, ) is introduced and
studied quite extensively by Gupta and Kundu in a series of papers from (1999) to
(2003) and Sarhan (2007). The cdf of GED(«, 3) takes the following form

F(z;a,8) = (1 — exp{—az})?, z>0,0,8>0. (1.1)
The corresponding sf is
F(z;o,8) = 1 - (1 — exp{—az})?, (1.2)

the pdf is
f(z;a,8) = afexp{—az} (1 — exp{~az})’ !, (1.3)

the hazard rate function is

aBexp{—az} (1 — exp{—az})? !

ca,f) = 1.4
h(z; e, 0) 1-(1- exp{—a:z:})ﬁ ’ (14)
and the MTTF is o o
MTTF =3 (') ("il . (1.5)
i=1

Here o is the scale parameter and § is the shape parameter. As it seems GED(«, )
reduces to ED(a) when the shape parameter § equals 1. The GED(a, ) can have
increasing and decreasing hazard rates depending on the shape parameter 8. The
hazard rate increase from 0 to o if 3 > 1 and if § < 1 it decreases from oo to . This
property leads to a good ability of using this distribution in reliability and life testing.

The main objective in this paper is to derive the MLE of the parameters of
the GED(a, 3), when the data are grouped and censored. The paper gives some
reliability measures for the GED. At this situation, it is known that MLE does not
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give closed form, but iterative procedure can be used to give the required results.
In fact numerical iterative procedure has been used for the GE by Ehrenfeld (1962)
and Nelson (1977) among many others.

The rest of the paper is organized as follows. In section 2, we present the nota-
tions and assumptions used throughout this paper. Point and interval estimations
of the unknown parameters are discussed in section 3. Testing for the goodness of
it of ED against the GED based on the estimated likelihood ratio test statistics is
discussed in section 4. A set of real data is applied and a conclusion is drawn in
section 5.

2. MODEL AND ASSUMPTIONS

Assumptions:

1. n independent and identical experimental units are put on a life test at time
ZEro.

2. The lifetime of each unit follows a GED(a, ) with cdf given by (1.1).
3. The inspection times 0 < {; < tg < -+ < tx < 00 are predetermined.

4. The test is terminated at the predetermined time t;. That is, the data is of
Type-I censoring.

5. to =0 and tgy = o0.
6. The number of failures in (¢;,t;+1] are recorded.

The data collected from the above test scheme consist of number of failures n;
in the interval (¢;-1, i, ¢ = 1,2, ...k and the number of units tested without failing
up to tg, nge1 (censored units).

3. PARAMETER ESTIMATION

Based on the data collected in the previous section, the likelihood function takes
the following form

k
L=C [][P{ti-r < T < t}]™ [P{T > ti}]™+ (3.1)

i=1

where C = —,%—' is a constant with respect to the parameters a and 3.
=1 ng!

But
P{t; 1 <T <t} = F(t;) — F(ti-1),
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and
P{T > tx} =1— F(tg).
Then based on assumption 2, we have
neyr K i
L=C [1 -(1- e—atk)ﬁ] I1 [(1 - e-m’i)ﬁ -(1- e—"“—l)ﬁ] (3.2)

i=1

The log-likelihood function becomes

—at s k —at; 8 —ati_ B
£=lnC+nk+1ln[1—(1—e k) ]+Zniln{[(l—e ') —(l—e ati ‘) ]},
i=1

(3.3)
The partial derivatives of £ are
0L tgngy1fe o (1 S
da 1—(1—eotk)?
k n, [tie—ati (1—emet)P1 g jemotio (1 — e—at,-_l)ﬁ-l]

+ ; (1—emat)f — (1 — e=ati-1)P ’
oL ner1 (1—e7@%)PIn (1 - eot)  ny (1— e21)PIn (1 — e—oh)
E 1—(1—e-ote)? i (1—e-atr)?

k ng [(1 —emot)Pn (1 - emots) - (1—e~oti-1)PIn (1 - e“"t"-l)]
" i=2 (1—emeti)f — (1 - gmati-1)f .

Setting g—fi =0 and % = 0, we get the likelihood equations, which should be solved

to get the MLE of the parameters o and 3. As it seems the likelihood equations
have no closed form solutions in « and 3. Therefore a numerical technique method
should be used to get the solution.

Asymptotic confidence bounds: Since the MLE of the element of the vector of
unknown parameters § = (o, ), are not obtained in closed forms, then it is not
possible to derive the exact distributions of the MLE of these parameters. Thus
we derive approximate confidence intervals of the parameters based on the asymp-
totic distributions of the MLE of the parameters. It is known that the asymptotic
distribution of the MLE 6 is given by, see Miller (1981),

(@=a),(8-8)) - N2 (0,17 (e, ) (34)

where I"1 (a, B) is the variance covariance matrix of the unknown parameters 6 =
(@, B). The elements of the 2 x 2 matrix I1, I;;(a,8), 4,7 = 1,2, can be approxi-
mated by I;;(&, 8), where
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. a2L()
Iij(6) = — (3.5)
56:96; |,_;
From (3.3), we get the following
2 k+1 PP P 2
%aﬁz = Zm Lnet v[”"‘] , (3.6)
’l«
8L ’“+1 PP, 52 — [P, g]*
- = > m 5 : (3.7)
op* i=1 F;
0°L & PPiag—PiaPis
pap = 2™ P2 ' (3.8)
=1
where
Bi=[gl - lgi1?,  i=1,2...,k+1,
Po = B {[gi}ﬁ-lgi,a - [gi—llﬁ_lgi~—l,a} .
Pg = [gPIngi—[gi1)PIngiy,
Pig = [9:°[In gi) — [gi-1)P[In gi—1]?,
Piag = (9 00— 9i-1)""1gic1,a + ﬂ{[gi]ﬁ"lgi,alngi - [giwllﬂ"lgi-l,alngi-l} :

P2 = ﬁ{(ﬁ—l)[lgz]’@ 20 — [9i-11" 72071 o] + 1907 201,02 — 1917 gim1 02 }

gi=gltsa)=1-€e §i=1,2,...,k grt1=1, go=0,

O.'t,‘

- 2 _—at;
i = lie y Gia?2 = —tie e

Therefore, the approximate 100(1 — v)% two sided confidence intervals for « and 3
are, respectively, given by

&+ Zy o1&,  B+Z,n\In(B)

Here, Z,,, is the upper (7y/2)th percentile of a standard normal distribution.

4. GOODNESS OF FIT

The problem of testing goodness-of-fit of an exponential distribution model
against the unrestricted class of alternative is complex. However, by restricting the
alternative to a generalized exponential distribution, we can use the usual likelihood
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ratio test statistic, see (1973), to test the adequacy of an exponential distribution.
The following are the null and the alternative hypotheses, respectively,

Hy : (=1, exponential distribution,
H; : (B #1, generalized exponential distribution.

In terms of the MLE, the likelihood ration test statistic for testing Hy against H; is

L(a,f=1)
L(a, B)

Under the null hypothesis, X; = —2 In(A) = 2(Lgg — Lg) follows a x? distribution
with 1 degree of freedom. Here Lg and Lgg are the log-likelihood functions under
Hy and Hj, respectively, after replacing the unknown parameters withe their MLE.

A= (4.1)

5. DATA ANALYSIS

Using the set of real data presented in Nelson (1982), which is a set of cracking
data on 167 independent and identically parts in a machine. The test duration
was 63.48 months and 8 unequally spaced inspections were conducted to obtain the
number of cracking parts in each interval. The data were

(t1,---,ts) = (6.12,19.92,29.64, 35.40, 39.72, 45.24, 52.32, 63.48)

and
(z1,---,z8) = (5,16,12,18,18,2,6,17,73)

Assuming the ED(«) (or under Hy: = 1), the MLE of & and MTTF are obtained
as

& =1.2097 x 1072, MTTF = 82.6655.

The corresponding log-likelihood function is Lg = —316.6705.
Assuming the GED(q, 3), the MLE of the parameters o and 3 are obtained as

& = 2.0285 x 1072, and B = 1.7839

The corresponding log-likelihood function is Lggp = —309.74.

Therefore, the likelihood ratio test statistic is Xy = 2(Lggp — LEp) = 13.8592 and
the p-value is 1.9708 x 10~4. Thus the GED(2.0285 x 1072,1.7839) fits this data
much better than ED(1.2097 x 1072).
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Figure 5.1. The estimated hazard rate functions.

The variance covariance matrix is computed as

-1 | 81226 x 107¢ 6.5626 x 1074
T | 6.5626 x 107% 7.3470 x 1072

Thus, the variances of the MLE of o and  become Var (&) = 8.1226 x 107 and
Var (B) = 7.3470 x 10~2. Therefore, the 95% C.I of a and B, respectively, are

[1.4699 x 1072, 2.5871 x 10“2] . [1.2526, 2.3151).

Figure 5.1 shows the hazard rate functions of the ED(a) and GED(«, 8) computed
when the MLE of the parameters replacing the unknown parameters.

Figure 5.2 shows the empirical estimate of survival function and estimation of
survival function under Hy and H;. Also, we computed the Kolmogorov-Smirnov
(K-S) distances of the empirical distribution function and the fitted distribution
for the data set. The K-S distance between the empirical survival function and
the fitted exponential survival function is 0.0547. The K-S distance between the
empirical survival function and the fitted generalized exponential survival function
is 0.0298.

Based on the 95% C.I of 8 and the values of the K-S distances, we get the
same conclusion that the values of the likelihood ration test statistics and p-value
which leads to that the GED(2.0285 x 1072,1.7839) fits this data rather than the
ED(1.2097 x 1072).
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Figure 5.2. The empirical and fitted survival functions.
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