DOI QR코드

DOI QR Code

GENERALIZED FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS FOR EXPONENTIAL TYPE FUNCTIONS OF GENERALIZED BROWNIAN MOTION PATHS

  • Jae Gil Choi (School of General Education Dankook University)
  • 투고 : 2023.01.07
  • 심사 : 2023.05.31
  • 발행 : 2023.10.31

초록

Let Ca,b[0, T] denote the space of continuous sample paths of a generalized Brownian motion process (GBMP). In this paper, we study the structures which exist between the analytic generalized Fourier-Feynman transform (GFFT) and the generalized convolution product (GCP) for functions on the function space Ca,b[0, T]. For our purpose, we use the exponential type functions on the general Wiener space Ca,b[0, T]. The class of all exponential type functions is a fundamental set in L2(Ca,b[0, T]).

키워드

참고문헌

  1. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507. http://projecteuclid.org/euclid.dmj/1077473257 1077473257
  2. R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to L2 over the space C, Duke Math. J. 14 (1947), 99-107. http://projecteuclid.org/euclid.dmj/1077473992 1077473992
  3. S. J. Chang and J. G. Choi, A representation for the inverse generalised Fourier-Feynman transform via convolution product on function space, Bull. Aust. Math. Soc. 95 (2017), no. 3, 424-435. https://doi.org/10.1017/S0004972716001039
  4. S. J. Chang, J. G. Choi, and A. Y. Ko, Multiple generalized analytic Fourier-Feynman transform via rotation of Gaussian paths on function space, Banach J. Math. Anal. 9 (2015), no. 4, 58-80. https://doi.org/10.15352/bjma/09-4-4
  5. S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925-2948. https://doi.org/10.1090/S0002-9947-03-03256-2
  6. S. J. Chang, H. S. Chung, and D. Skoug, Convolution products, integral transforms and inverse integral transforms of functionals in L2(C0[0, T]), Integral Transforms Spec. Funct. 21 (2010), no. 2, 143-151. https://doi.org/10.1080/10652460903063382
  7. S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393. https://doi.org/10.1080/1065246031000074425
  8. S. J. Chang, D. Skoug, and J. G. Choi, Rotation of Gaussian processes on function space, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2295-2308. https://doi.org/10.1007/s13398-018-00620-1
  9. S. J. Chang, D. Skoug, and H. S. Chung, Relationships for modified generalized integral transforms, modified convolution products and first variations on function space, Integral Transforms Spec. Funct. 25 (2014), no. 10, 790-804. https://doi.org/10.1080/10652469.2014.918614
  10. T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661-673. https://doi.org/10.2307/2154908
  11. T. Huffman, C. Park, and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), no. 2, 247-261. https://doi.org/10.1307/mmj/1029005461
  12. T. Huffman, C. Park, and D. Skoug, Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27 (1997), no. 3, 827-841. https://doi.org/10.1216/rmjm/1181071896
  13. T. Huffman, C. Park, and D. Skoug, Generalized transforms and convolutions, Internat. J. Math. Math. Sci. 20 (1997), no. 1, 19-32. https://doi.org/10.1155/S0161171297000045
  14. H.-H. Kuo, Fourier-Wiener transform on Brownian functionals, in Probability theory on vector spaces, II (Proc. Second Internat. Conf., B la˙zejewko, 1979), 146-161, Lecture Notes in Math., 828, Springer, Berlin, 1980.
  15. Y.-J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite-dimensional spaces. I, Trans. Amer. Math. Soc. 262 (1980), no. 1, 259-283. https://doi.org/10.2307/1999982
  16. Y.-J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite-dimensional spaces. II, J. Differential Equations 41 (1981), no. 1, 59-86. https://doi.org/10.1016/0022-0396(81)90053-X
  17. Y.-J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Analy. 47 (1982), no. 2, 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
  18. Y.-J. Lee, Unitary operators on the space of L2-functions over abstract Wiener spaces, Soochow J. Math. 13 (1987), no. 2, 165-174.
  19. C. Park, D. Skoug, and D. A. Storvick, Relationships among the first variation, the convolution product and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), no. 4, 1447-1468. https://doi.org/10.1216/rmjm/1181071725
  20. J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731-738. http://projecteuclid.org/euclid.pjm/1102995821 102995821
  21. J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37-46. http://projecteuclid.org/euclid.ijm/1256052816 https://doi.org/10.1215/ijm/1256052816
  22. J. Yeh, Stochastic Processes and the Wiener Integral, Pure and Applied Mathematics, Vol. 13, Marcel Dekker, Inc., New York, 1973.