1 |
T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157. http://projecteuclid.org/euclid.dmj/1077476005
DOI
|
2 |
M. Brion and M. Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997), no. 2, 371-392. https://doi.org/10.1090/S0894-0347-97-00229-4
DOI
|
3 |
L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3 (1953), 513-522. http://projecteuclid.org/euclid.pjm/1103051325
DOI
|
4 |
R. Chapman, Reciprocity laws for generalized higher dimensional Dedekind sums, Acta Arith. 93 (2000), no. 2, 189-199. https://doi.org/10.4064/aa-93-2-189-199
DOI
|
5 |
R. Dedekind, Erlauterungen zu zwei Fragmenten von Riemann, Riemann's Gesammelte Mathematische Werke, 2nd edition, 1892.
|
6 |
P. Deligne, Applications de la formule des traces aux sommes trigonometriques, in Cohomologieetale, 168-232, Lecture Notes in Math., 569, Springer, Berlin, 1977.
|
7 |
J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), no. 2, 275-294. https://doi.org/10.1007/BF01243914
DOI
|
8 |
S. Garoufalidis and J. E. Pommersheim, Values of zeta functions at negative integers, Dedekind sums and toric geometry, J. Amer. Math. Soc. 14 (2001), no. 1, 1-23. https://doi.org/10.1090/S0894-0347-00-00352-0
DOI
|
9 |
G. van der Geer, Hilbert Modular Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 16, Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/978-3-642-61553-5
|
10 |
D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116. https://doi.org/10.1515/crll.1977.290.113
|
11 |
S. Hu and D. Solomon, Properties of higher-dimensional Shintani generating functions and cocycles on , Proc. London Math. Soc. (3) 82 (2001), no. 1, 64-88. https://doi.org/10.1112/S0024611500012612
DOI
|
12 |
H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/coll/053
|
13 |
B. Jun and J. Lee, Equidistribution of generalized Dedekind sums and exponential sums, J. Number Theory 137 (2014), 67-92. https://doi.org/10.1016/j.jnt.2013.10.020
DOI
|
14 |
B. Jun and J. Lee, Special values of partial zeta functions of real quadratic fields at nonpositive integers and the Euler-Maclaurin formula, Trans. Amer. Math. Soc. 368 (2016), no. 11, 7935-7964. https://doi.org/10.1090/tran/6679
DOI
|
15 |
C. Meyer, Die Berechnung der Klassenzahl Abelscher Korper uber quadratischen Zahlkorpern, Akademie-Verlag, Berlin, 1957.
|
16 |
G. Myerson, Dedekind sums and uniform distribution, J. Number Theory 28 (1988), no. 3, 233-239. https://doi.org/10.1016/0022-314X(88)90039-X
DOI
|
17 |
A. N. Parsin, On the arithmetic of two-dimensional schemes. I. Distributions and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 4, 736-773, 949.
|
18 |
J. E. Pommersheim, Barvinok's algorithm and the Todd class of a toric variety, J. Pure Appl. Algebra 117/118 (1997), 519-533. https://doi.org/10.1016/S0022-4049(97)00025-X
DOI
|
19 |
H. Rademacher and E. Grosswald, Dedekind Sums, The Mathematical Association of America, Washington, DC, 1972.
|
20 |
C. L. Siegel, Bernoullische Polynome und quadratische Zahlkorper, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II (1968), 7-38.
|
21 |
I. Vardi, A relation between Dedekind sums and Kloosterman sums, Duke Math. J. 55 (1987), no. 1, 189-197. https://doi.org/10.1215/S0012-7094-87-05510-4
DOI
|
22 |
H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313-352.
DOI
|
23 |
D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172. https://doi.org/10.1007/BF01351173
DOI
|
24 |
D. Zagier, Valeurs des fonctions zeta des corps quadratiques reels aux entiers negatifs, in Journees Arithmetiques de Caen (Univ. Caen, Caen, 1976), 135-151. Asterisque 41-42, Soc. Math. France, Paris, 1977.
|