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GENERALIZED FOURIER–FEYNMAN TRANSFORMS AND

CONVOLUTIONS FOR EXPONENTIAL TYPE FUNCTIONS

OF GENERALIZED BROWNIAN MOTION PATHS

Jae Gil Choi

Abstract. Let Ca,b[0, T ] denote the space of continuous sample paths

of a generalized Brownian motion process (GBMP). In this paper, we

study the structures which exist between the analytic generalized Fourier–
Feynman transform (GFFT) and the generalized convolution product

(GCP) for functions on the function space Ca,b[0, T ]. For our purpose, we

use the exponential type functions on the general Wiener space Ca,b[0, T ].
The class of all exponential type functions is a fundamental set in

L2(Ca,b[0, T ]).

1. Introduction

The concept of the Fourier–Wiener transform (FWT) introduced by
Cameron and Martin [1, 2, 20] is now playing significant role in infinite di-
mensional functional analysis. The FWT and several analogies have developed
in various research fields on infinite dimensional Banach spaces. For instance,
the analytic Fourier–Feynman transform [10–13,19] and the integral transform
[6, 17, 18] are developed by many authors. In particular, Lee [15, 16] provided
applications of the FWT to the study of differential equations on infinite di-
mensional Banach spaces. He defined the FWT on a class of exponential type
analytic functions on abstract Wiener space and established theorems guaran-
teeing existence and regularity of solutions of the Cauchy problem. Also, Kuo
[14] obtained several results involving the FWT of Brownian functionals, and
used these results to solve a differential equation.

On the other hand, the concept of the “convolution product” corresponding
to each transform and the structure between the transforms and the corre-
sponding convolutions also have been established in the literature. Let B be
an abstract Wiener space (or its complexification), let F denote the one of

Received January 7, 2023; Revised May 17, 2023; Accepted May 31, 2023.
2020 Mathematics Subject Classification. Primary 28C20, 42B10; Secondary 46B09,

60J65.
Key words and phrases. Generalized Brownian motion process, generalized Fourier–

Feynman transform, generalized convolution product, exponential type function.

©2023 Korean Mathematical Society

1141



1142 J. G. CHOI

the transforms commented above, and let ∗ be a corresponding convolution
product. Then the results in [6, 10–13,17–20] say that

(1.1) F(F ∗G) = F(F )F(G)

under appropriate condition and with appropriate functions F and G on B.
In [5,7], the authors used a GBMP to define an analytic GFFT for functions

on a general Wiener space Ca,b[0, T ]. By a study of Yeh [21, 22], the GBMP
associated with continuous functions a(·) and b(·) induces the space Ca,b[0, T ].
We refer the references [3–5, 7, 21, 22] for more detailed information about the
definition of the GBMP and the construction of the function space Ca,b[0, T ]. A
standard Brownian motion is stationary in time, while in general, the GBMP is
not stationary in time and is subject to the time dependent drift a(t). From this
reason, the GFFT and the GCP do not satisfy the homomorphism structure
such as (1.1). For more details, see [8, Section 2].

Based on these background, we in this paper study the relationships between
the GFFTs and the GCPs defined for functions on the very general function
space Ca,b[0, T ]. By an unusual behavior of the drift a(t) of the GBMP, the
relationships (see Theorems 3.3 and 3.5 below) between the transforms and
the convolutions are more complicated than the relationships studied on the
abstract Wiener space B.

2. Transforms and convolutions

In this section, we investigate interesting relationships between the GFFTs
and the GCP for exponential type functions on Ca,b[0, T ]. We adopt the no-
tation and terminologies of those papers on the assumption that readers are
familiar with the references [5, 7]. The basic concepts and definitions of the
function space (Ca,b[0, T ],W(Ca,b[0, T ]), µ) which forms a complete probabil-
ity space, the scale-invariant measurability on Ca,b[0, T ], the Cameron–Martin
space (C ′

a,b[0, T ], (·, ·)C′
a,b

, ∥ · ∥C′
a,b

), and the analytic generalized Feynman in-

tegral E
anfq
x [F (x)] may also be found in [3, 4]. In particular, we follow the

definition in [3, 4] for the Paley–Wiener–Zygmund stochastic integral (w, x)∼.
However, in order to propose our assertions in this paper, we shall restate the
following definitions of the GFFT and the GCP.

Definition 2.1. Let C+ = {λ ∈ C : Re(λ) > 0} and let C̃+ = {λ ∈ C :
λ ̸= 0 and Re(λ) ≥ 0}. Let F be a complex-valued scale-invariant measurable
function such that the function space integral J(λ) =

∫
Ca,b[0,T ]

F (λ−1/2x)dµ(x)

exists and is finite for all λ > 0. If there exists a function J∗(λ) analytic in C+

such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the analytic
function space integral of F over Ca,b[0, T ] with parameter λ. For λ ∈ C+, we
write

Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).
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For λ ∈ C+ and y ∈ Ca,b[0, T ], let

Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
q (F ) of F , by the formula,

T (p)
q (F )(y) = l. i.m.

λ→−iq
λ∈C+

Tλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq
λ∈C+

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′

dµ(y) = 0,

where 1/p+ 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by the

formula,

(2.1) T (1)
q (F )(y) = lim

λ→−iq
λ∈C+

Tλ(F )(y)

for s-a.e. y ∈ Ca,b[0, T ] if the limit exists.

We note that if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists and

T
(p)
q (G) ≈ T

(p)
q (F ).

Definition 2.2. Let F and G be scale-invariant measurable functions on
Ca,b[0, T ]. For λ ∈ C̃+, we define their GCP (F ∗G)λ (if it exists) by

(F ∗G)λ(y) =

{
Eanλ

x

[
F
(
y+x√

2

)
G
(
y−x√

2

)]
, λ ∈ C+

E
anfq
x

[
F
(
y+x√

2

)
G
(
y−x√

2

)]
, λ = −iq, q ∈ R \ {0}.

When λ = −iq, we denote (F ∗G)λ by (F ∗G)q.

Let E be the class of functions having the form

(2.2) Ψw(x) = exp{(w, x)∼}

for some w ∈ C ′
a,b[0, T ] and for s-a.e. x ∈ Ca,b[0, T ], where (w, x)∼ denotes

the Paley–Wiener–Zygmund stochastic integral [3, 4]. The functions given by
equation (2.2) and linear combinations (with complex coefficients) of the Ψw’s
are called the (partially) exponential type functions on Ca,b[0, T ].

It was shown in [9] that the class E = {Ψw : w ∈ C ′
a,b[0, T ]} is a fundamental

set in L2(Ca,b[0, T ]). Let

E(Ca,b[0, T ]) = SpanE .

Every exponential type function is scale-invariant measurable. Since we shall
identify functions which coincide s-a.e. on Ca,b[0, T ], E(Ca,b[0, T ]) can be con-
sidered as the space of all s-equivalence classes of partially exponential type
functions. For a more detailed illustration of the class E(Ca,b[0, T ]), see [3].

The following theorems are due to Chang and Choi [3].
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Theorem 2.3. Let Ψw ∈ E be given by equation (2.2). Then for all p ∈ [1, 2]

and all q ∈ R \ {0}, the Lp analytic GFFT of Ψw, T
(p)
q (Ψw) exists and is given

by the formula

(2.3) T (p)
q (Ψw)(y) = exp

{
i

2q
∥w∥2C′

a,b
+ (−iq)−1/2(w, a)C′

a,b

}
Ψw(y)

for s-a.e. y ∈ Ca,b[0, T ]. Thus, T
(p)
q (Ψw) is an element of E(Ca,b[0, T ]).

Theorem 2.4. Given any p ∈ [1, 2] and q ∈ R \ {0}, the Lp analytic GFFT,

T
(p)
q : E(Ca,b[0, T ]) → E(Ca,b[0, T ]) is an onto transform.

Theorem 2.5. Let Ψw1
and Ψw2

be exponential type functions in E. Then the
GCP of Ψw1

and Ψw2
, (Ψw1

∗Ψw2
)q exists for all q ∈ R \ {0} and is given by

the formula

(Ψw1
∗Ψw2

)q(y)(2.4)

= exp

{
i

4q
∥w1 − w2∥2C′

a,b
+ (−2iq)−1/2(w1 − w2, a)C′

a,b

}
Ψw1+w2√

2

(y)

for s-a.e. y ∈ Ca,b[0, T ]. Furthermore, (Ψw1
∗ Ψw2

)q is an element of
E(Ca,b[0, T ]).

Given any exponential type functions F and G in E(Ca,b[0, T ]), F and G
can be written as

F ≈
n∑

j=1

αjΨwj
and G ≈

m∑
k=1

βlΨτk ,

respectively, for finite sequences {w1, . . . , wn} and {τ1, . . . , τm} in C ′
a,b[0, T ],

and finite sequences {α1, . . . , αn} and {β1, . . . , βm} in C\{0}, since E(Ca,b[0, T ])

= SpanE . Thus, using the linearity of the Lp analytic GFFT T
(p)
q , the bilin-

earity of the GCP ( · ∗ · )q, (2.3), and (2.4), it follows that for each p ∈ [1, 2],

T (p)
q (F ) ≈

n∑
j=1

αjT
(p)
q (Ψwj

)(2.5)

≈
n∑

j=1

αj exp

{
i

2q
∥wj∥2C′

a,b
+ (−iq)−1/2(wj , a)C′

a,b

}
Ψwj

and

(F ∗G)q

≈
n∑

j=1

m∑
k=1

αjβk(Ψwj
∗Ψτk)q

≈
n∑

j=1

m∑
k=1

αjβk exp

{
i

4q
∥wj − τk∥2C′

a,b
+ (−2iq)−1/2(wj − τk, a)C′

a,b

}
Ψwj+τk√

2

,
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respectively.
In view of equations (2.5) and (2.3), we see that for every function in

E(Ca,b[0, T ]), T
(p)
q (F ) ≈ T

(1)
q (F ) for all p ∈ (1, 2]. Thus throughout the re-

mainder of this paper, we work with the L1 analytic GFFT for our assertions.

3. Relationship between GFFTs and GCPs

In view of equation (2.1), it follows that for s-a.e. y ∈ Ca,b[0, T ],

T (1)
q (F )(y) = lim

λ→−iq
λ∈C+

Tλ(F )(y) = Eanfq
x [F (y + x)].

However, by the effect of the drift function a(t) of the GBMP, we see that

Eanλ
x [F (x)] ̸= Eanλ

x [F (−x)]

for almost every function F on Ca,b[0, T ]. This yields the facts that

T (1)
q (F )(y) ̸= Eanfq [F (y − x)]

and the GCP of functions on Ca,b[0, T ] is not commutative.
The above discussion leads us to the following definition in order to specify

another function space transform on Ca,b[0, T ]. Given a scale-invariant mea-
surable function F on Ca,b[0, T ], let

(3.1) T
(1)
q,+(F )(y) = T (1)

q (F )(y)

and let

(3.2) T
(1)
q,−(F )(y) = Eanfq [F (y − x)].

The generalized transforms T
(1)
q,+(F ) and T

(1)
q,−(F ) are called the p-GFFT

and the n-GFFT, respectively, of scale-invariant measurable functions F on
Ca,b[0, T ].

Lemma 3.1. Let Ψw ∈ E be given by equation (2.2). Then for all nonzero real
numbers q and ρ, it follows that

(3.3) Eanfq
x [Ψw(ρx)] = exp

{
iρ2

2q
∥w∥2C′

a,b
+ ρ(−iq)−1/2(w, a)C′

a,b

}
.

Using (3.3) with ρ = −1, we have the following lemma.

Lemma 3.2. Let Ψw ∈ E be given by equation (2.2). Then for all q ∈ R \ {0},
the analytic n-GFFT T

(1)
q,−(Ψw) of Ψw exists and is given by the formula

(3.4) T
(1)
q,−(Ψw)(y) = exp

{
i

2q
∥w∥2C′

a,b
− (−iq)−1/2(w, a)C′

a,b

}
Ψw(y)

for s-a.e. y ∈ Ca,b[0, T ]. Thus, T
(1)
q,−(Ψw) is an element of E(Ca,b[0, T ]).

We are now ready to provide our main assertions. In our next theorem, we
establish that the p-GFFT of the GCP of functions F and G in E(Ca,b[0, T ])
is the product of their iterated transforms.
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Theorem 3.3. For any exponential type functions F and G in E(Ca,b[0, T ]),
it follows that

(3.5) T
(1)
q,+

(
(F ∗G)q

)
(y) = T

(1)
2q,+

(
T

(1)
2q,+(F )

)( y√
2

)
T

(1)
2q,−

(
T

(1)
2q,+(G)

)( y√
2

)
for all q ∈ R \ {0} and s-a.e. y ∈ Ca,b[0, T ].

Proof. In order to establish equation (3.5), it will suffice to show that for any
functions Ψw1

and Ψw2
in E ,

T
(1)
q,+

(
(Ψw1 ∗Ψw2)q

)
(y)(3.6)

= T
(1)
2q,+

(
T

(1)
2q,+(Ψw1

)
)( y√

2

)
T

(1)
2q,−

(
T

(1)
2q,+(Ψw2

)
)( y√

2

)
for s-a.e. y ∈ Ca,b[0, T ].

Using (2.3) with Ψw replaced with (Ψw1 ∗Ψw2)q, and (2.4), it follows that

T
(1)
q,+

(
(Ψw1

∗Ψw2
)q
)
(y)(3.7)

= exp

{
i

2q

∥∥∥∥w1 + w2√
2

∥∥∥∥2
C′

a,b

+ (−iq)−1/2

(
w1 + w2√

2
, a

)
C′

a,b

}
(Ψw1

∗Ψw2
)q(y)

= exp

{
i

4q
∥w1 + w2∥2C′

a,b
+ (−2iq)−1/2(w1 + w2, a)C′

a,b

}
× exp

{
i

4q
∥w1 − w2∥2C′

a,b
+ (−2iq)−1/2(w1 − w2, a)C′

a,b

}
Ψw1+w2√

2

(y)

= exp

{
i

2q
∥w1∥2C′

a,b
+ 2(−2iq)−1/2(w1, a)C′

a,b

}
Ψw1

(
y√
2

)
× exp

{
i

2q
∥w2∥2C′

a,b

}
Ψw2

(
y√
2

)
for s-a.e. y ∈ Ca,b[0, T ].

Next, using equation (3.1) with q replaced with 2q and applying (2.3) two
times, it follows that

T
(1)
2q,+

(
T

(1)
2q,+(Ψw1

)
)( y√

2

)
(3.8)

= exp

{
i

2q
∥w1∥2C′

a,b
+ 2(−i2q)−1/2(w1, a)C′

a,b

}
Ψw1

(
y√
2

)
for s-a.e. y ∈ Ca,b[0, T ], and using equation (3.4) with q and Ψw replaced with

2q and T
(1)
2q,+(Ψw2), respectively, it also follows that

(3.9) T
(1)
2q,−

(
T

(1)
2q,+(Ψw2

)
)( y√

2

)
= exp

{
i

2q
∥w2∥2C′

a,b

}
Ψw2

(
y√
2

)
for s-a.e. y ∈ Ca,b[0, T ].

Equation (3.6) follows now from (3.7), (3.8) and (3.9). □
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Remark 3.4. Using a same method used in the proof of Theorem 3.3, one can
show that for every exponential type function F in E(Ca,b[0, T ]),

T
(1)
q,+

(
T

(1)
q,−(F )

)
≈ T

(1)
q,−(T

(1)
q,+(F ))

for all q ∈ R \ {0}. Thus equation (3.5) can be rewritten by the formula

T
(1)
q,+

(
(F ∗G)q

)
(y) = T

(1)
2q,+

(
T

(1)
2q,+(F )

)( y√
2

)
T

(1)
2q,+

(
T

(1)
2q,−(G)

)( y√
2

)
for s-a.e. y ∈ Ca,b[0, T ]. Also, the following relationship between the n-GFFT
and the GCP follows readily from the techniques developed in the proof of
Theorem 3.3:

T
(1)
q,−

(
(F ∗G)q

)
(y) = T

(1)
2q,−

(
T

(1)
2q,+(F )

)( y√
2

)
T

(1)
2q,−

(
T

(1)
2q,−(G)

)( y√
2

)
(3.10)

= T
(1)
2q,+

(
T

(1)
2q,−(F )

)( y√
2

)
T

(1)
2q,−

(
T

(1)
2q,−(G)

)( y√
2

)
for all q ∈ R \ {0} and s-a.e. y ∈ Ca,b[0, T ].

Theorem 3.5. For any exponential type functions F and G in E(Ca,b[0, T ]),
it follows that(

T
(1)
2q,−

(
T

(1)
2q,+(F )

)
∗ T (1)

2q,−
(
T

(1)
2q,+(G)

))
−q

(y)(3.11)

= T
(1)
q,−

(
T

(1)
−2q,+

(
T

(1)
2q,+(F )

)( ·√
2

)
T

(1)
−2q,−

(
T

(1)
2q,+(G)

)( ·√
2

))
(y)

for all q ∈ R \ {0} and s-a.e. y ∈ Ca,b[0, T ].

Proof. It also suffices to show that equation (3.11) holds with F and G replaced
with exponential functions Ψw1 and Ψw2 in E .

Using (2.3) and (3.4), it first follows that

T
(1)
2q,−

(
T

(1)
2q,+(Ψw1)

)
(y) = exp

{
i

2q
∥w1∥2C′

a,b

}
Ψw1(y)

and

T
(1)
2q,−

(
T

(1)
2q,+(Ψw2

)
)
(y) = exp

{
i

2q
∥w2∥2C′

a,b

}
Ψw2(y)

for s-a.e. y ∈ Ca,b[0, T ]. Next, applying (2.4) with q replaced with −q, it follows
that (

T
(1)
2q,−

(
T

(1)
2q,+(Ψw1

)
)
∗ T (1)

2q,−
(
T

(1)
2q,+(Ψw2

)
))

−q
(y)(3.12)

= exp

{
i

2q

(
∥w1∥2C′

a,b
+ ∥w2∥2C′

a,b

)}
(Ψw1

∗Ψw2
)−q(y)

= exp

{
i

2q

(
∥w1∥2C′

a,b
+ ∥w2∥2C′

a,b

)}
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× exp

{
− i

4q
∥w1 − w2∥2C′

a,b
+ (2iq)−1/2(w1 − w2, a)C′

a,b

}
Ψw1+w2√

2

(y)

= exp

{
i

4q
∥w1 + w2∥2C′

a,b
+ (2iq)−1/2(w1 − w2, a)C′

a,b

}
Ψw1+w2√

2

(y)

for s-a.e. y ∈ Ca,b[0, T ].
On the other hand, applying (2.3) two times, it follows that

T
(1)
−2q,+

(
T

(1)
2q,+(Ψw1

)
)
(y)

= exp

{
(−2iq)−1/2(w1, a)C′

a,b
+ (2iq)−1/2(w1, a)C′

a,b

}
Ψw1

(y)

for s-a.e. y ∈ Ca,b[0, T ], and applying (3.4), it also follows that

T
(1)
−2q,−

(
T

(1)
2q,+(Ψw2)

)
(y)

= exp

{
(−2iq)−1/2(w2, a)C′

a,b
− (2iq)−1/2(w2, a)C′

a,b

}
Ψw2

(y)

for s-a.e. y ∈ Ca,b[0, T ]. Next, using (3.2) with F replaced with

T
(1)
−2q,+(T

(1)
2q,+(Ψw1

))(·/
√
2)T

(1)
−2q,−(T

(1)
2q,+(Ψw2

))(·/
√
2),

and (3.3) with w = w1 + w2 and ρ = −1/
√
2, it follows that

T
(1)
q,−

(
T

(1)
−2q,+

(
T

(1)
2q,+(Ψw1

)
)( ·√

2

)
T

(1)
−2q,−

(
T

(1)
2q,+(Ψw2)

)( ·√
2

))
(y)(3.13)

= Eanfq
x

[
T

(1)
−2q,+

(
T

(1)
2q,+(Ψw1

)
)(y − x√

2

)
T

(1)
−2q,−

(
T

(1)
2q,+(Ψw2

)
)(y − x√

2

)]
= Eanfq

x

[
Ψw1

(
y − x√

2

)
Ψw2

(
y − x√

2

)]
× exp

{
(−2iq)−1/2(w1 + w2, a)C′

a,b
+ (2iq)−1/2(w1 − w2, a)C′

a,b

}
= Eanfq

x

[
exp

{
− 1√

2
(w1 + w2, x)

∼
}]

× exp

{
(−2iq)−1/2(w1 + w2, a)C′

a,b
+ (2iq)−1/2(w1 − w2, a)C′

a,b

}
Ψw1+w2√

2

(y)

= exp

{
i

4q
∥w1 + w2∥2C′

a,b
+ (2iq)−1/2(w1 − w2, a)C′

a,b

}
Ψw1+w2√

2

(y)

for s-a.e. y ∈ Ca,b[0, T ].
Now (3.12) and (3.13) yield equation (3.11) with F and G replaced with

Ψw1 and Ψw2 as desired. □

We finish this section with generalized Feynman integration formulas involv-
ing the GFFTs and the GCP.
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Corollary 3.6. For any exponential type functions F and G in E(Ca,b[0, T ]),
it follows that∫ anf−q

Ca,b[0,T ]

T
(1)
q,+

(
(F ∗G)q

)
(y)dµ(y)(3.14)

=

∫ anfq

Ca,b[0,T ]

T
(1)
−2q,+

(
T

(1)
2q,+(F )

)( y√
2

)
T

(1)
−2q,+

(
T

(1)
2q,+(G)

)(
− y√

2

)
dµ(y)

and ∫ anf−q

Ca,b[0,T ]

T
(1)
q,−

(
(F ∗G)q

)
(y)dµ(y)(3.15)

=

∫ anfq

Ca,b[0,T ]

T
(1)
−2q,+

(
T

(1)
2q,−(F )

)( y√
2

)
T

(1)
−2q,+

(
T

(1)
2q,−(G)

)(
− y√

2

)
dµ(y)

for all q ∈ R \ {0}, where
∫ anfq
Ca,b[0,T ]

F (x)dµ(x) denotes the analytic generalized

Feynman integral of F with parameter q [3, 5, 7].

4. Final remark with the previous works

Choosing a(t) ≡ 0 and b(t) = t on [0, T ], then the GBMP associated with
the functions a(·) and b(·) reduces a standard Brownian motion (Wiener pro-
cess), and so the function space Ca,b[0, T ] reduces to the classical Wiener space
C0[0, T ]. In this case, it follows that

T (1)
q (F ) ≈ T

(1)
q,+(F ) ≈ T

(1)
q,−(F )

for all scale-invariant measurable functions F on C0[0, T ]. Thus equations (3.5)
and (3.10) are rewritten as

(4.1) T (1)
q

(
(F ∗G)q

)
(y) = T

(1)
2q

(
T

(1)
2q (F )

)( y√
2

)
T

(1)
2q

(
T

(1)
2q (G)

)( y√
2

)
for s-a.e. y ∈ C0[0, T ]. Furthermore, a close examination of the right-hand side
of (4.1) shows that for any functions F and G in E(Ca,b[0, T ]),

(4.2) T (1)
q

(
(F ∗G)q

)
(y) = T (1)

q (F )

(
y√
2

)
T (1)
q (G)

(
y√
2

)
for s-a.e. y ∈ C0[0, T ]. This result subsumes similar known results obtained by
Huffman, Park and Skoug [10–13].

Also, in the case that a(t) ≡ 0 and b(t) = t on [0, T ], it follows that

T
(1)
−q,+(T

(1)
q (Ψw)) ≈ T

(1)
−q,−(T

(1)
q (Ψw)) ≈ Ψw

for all exponential functions Ψw ∈ E . From this and in view of Theorem 2.4,

one can conclude that the inverse transform {T (1)
q }−1 of T

(1)
q is equal to T

(1)
−q
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on E(C0[0, T ]). Under these arguments, equation (3.11) is rewritten by

(4.3)
(
T (1)
q (F ) ∗ T (1)

q (G)
)
−q

(y) = T (1)
q

(
F

(
·√
2

)
G

(
·√
2

))
(y)

for s-a.e. y ∈ Ca,b[0, T ]. This result subsumes similar a known result obtained
by Park, Skoug and Storvick [19, Theorem 3.1].

Under the setting a(t) ≡ 0 and b(t) = t on [0, T ], equations (3.14) and (3.15)
yield the same equation, respectively, as follows.∫ anf−q

C0[0,T ]

T (1)
q

(
(F ∗G)q

)
(y)dµ(y) =

∫ anfq

C0[0,T ]

F

(
y√
2

)
G

(
− y√

2

)
dµ(y).

This result subsumes similar a known result obtained by Huffman, Park and
Skoug [11, Theorem 3.4].

However, the GBMP has a time dependent drift, i.e., the GBMPs are not

centered Gaussian processes. Thus the GFFTs T
(1)
q,+ and T

(1)
q,− for functions on

Ca,b[0, T ] do not have complete homomorphism structures, such as (4.2) and
(4.3), with their GCP.
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