
J. Korean Math. Soc. 57 (2020), No. 4, pp. 845–871

https://doi.org/10.4134/JKMS.j190406

pISSN: 0304-9914 / eISSN: 2234-3008

EQUIDISTRIBUTION OF HIGHER DIMENSIONAL

GENERALIZED DEDEKIND SUMS

AND EXPONENTIAL SUMS

Hi-joon Chae, Byungheup Jun, and Jungyun Lee

Abstract. We consider generalized Dedekind sums in dimension n, de-
fined as sum of products of values of periodic Bernoulli functions. For

the generalized Dedekind sums, we associate a Laurent polynomial. Us-

ing this, we associate an exponential sum of a Laurent polynomial to the
generalized Dedekind sums and show that this exponential sum has a

nontrivial bound that is sufficient to fulfill the equidistribution criterion
of Weyl and thus the fractional part of the generalized Dedekind sums

are equidistributed in R/Z.

1. Introduction

Dedekind sums are rational numbers s(a, c) defined for a pair of relatively
prime integers (a, c) by the following formula

s(a, c) =

|c|∑
k=1

((
k

c

))((
ak

c

))
,

where ((x)) = x − [x] − 1/2 for x 6∈ Z and ((x)) = 0 for x ∈ Z. These
were introduced by R. Dedekind to describe modular transformation of the
eta function η(τ) = q1/24

∏∞
n=1(1 − qn) where q = e2πiτ for τ ∈ h = {z ∈

C | Im(z) > 0} [5,19]. While the modular discriminant ∆(τ) = η(τ)24 is a cusp
form of weight 12, η(τ) fails to be a modular form of weight 1/2 with respect
to SL2(Z). The failure is measured in the following: for A =

(
a b
c d

)
∈ SL2(Z),

log η(Aτ) = log η(τ) +
1

4
log{−(cτ + d)2}+ πiφ(A)
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with φ being the Rademacher φ-function:

φ
(
a b
c d

)
:=

{
sign(c) · s(a, c)− 1

12
a+d
c , if c 6= 0,

b
d , if c = 0.

Considering the weight of η(τ), one sees that φ is valued in 1
12Z.

The formulation of the Dedekind sum and the Rademacher φ-function has
interesting application to the partial zeta value at s = 0 of an ideal b of a real
quadratic field. If the fundamental unit ε acts on b by multiplication of

(
a b
c d

)
with respect to the basis [1, ω] for a reduced element in the sense of Gauss (i.e.,
ω > 1, 0 < ω′ < 1), we have the following two equations due to C. Meyer ([15])
and Siegel ([20]), respectively:

ζ(0, b) =
1

12

`−1∑
i=0

(bi − 3)

= s(a, c)− a+ d

12c
,

where bi are terms of the minus continued fraction of a/c (cf. [9]). While the
modularity of η(τ) reveals the integrality of the partial zeta values, s(a, c) is
far from being an integer (cf. [10, 13, 14, 16, 21]). The nonintegrality of the
Dedekind sum is measured by the rational function a+d

12c defined over SL2(Z).

Actually the mod-1 equidistribution of a+d
12c is a consequence of the Weil bound

of Kloosterman sums.
For the special values at negative integers, a higher degree generalization of

Dedekind sums is involved [8, 14, 24]. For i, j ≥ 1 and a, c relatively prime, we
define

sij(a, c) :=

c−1∑
k=0

B̃i

(
k

c

)
B̃j

(
ak

c

)
.

Here B̃k(x) denotes the k-th periodic Bernoulli function for k ≥ 1. It is the
Fourier series expansion of the Bernoulli polynomial Bk(x) restricted to the

unit interval [0, 1]: B̃k(x) = −k!
∑
m 6=0

e2πimx

(2πim)k
. Recall that Bk(x) is given by

the generating function

zexz

ez − 1
=

∞∑
k=0

Bk(x)

k!
zk.

We have, in particular, B̃k(x) = Bk(x−[x]) for k ≥ 2 and B̃1(x) = ((x)). These
sums are introduced by Apostol and Carlitz in study of modular transformation
of certain Lambert series ([1], [3]). They vanish for i + j odd. The classical
Dedekind sum s(a, c) appears as the case i = j = 1 (cf. [13]).

In [13], it is shown that the fractional part of Ri+jc
i+j−2sij(a, c) are equidis-

tributed where Ri+j is a constant determined by the weight N = i+ j only. It
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is obtained by the following formula:

(1) ci+j−2sij(a, c)−
αNrN
RNc

((
N − 1

i

)
ai +

(
N − 1

j

)
a′j
)
∈ 1

RN
Z.

Here a′ denotes the inverse of a modulo c and αN , rN are integers given by
N . Using this formula, one can associate an exponential sum which has a Weil
bound due to Denef-Loeser ([7]). Consequently, the equidistribution of the
fractional part of Ri+jc

i+j−2sij(a, c) is obtained.
The goal of this article is to generalize the result to higher dimension. The

generalization we take in this paper is as follows:

Definition 1.1. Let (r1, . . . , rn) ∈ Nn and (p1, . . . , pn−1, q) ∈ Zn such that
(pi, q) = 1 for every i. We define the generalized Dedekind sum as

sr1,...,rn(q; p1, . . . , pn−1)(2)

:=
∑

k1,...,kn−1∈Z/qZ

B̃r1

(
k1

q

)
· · · B̃rn−1

(
kn−1

q

)
B̃rn

(∑n−1
i=1 piki
q

)
.

The version considered by Zagier ([23]) is the case r1 = · · · = rn = 1. We
identify these sums as the coefficients of the Todd series of lattice cones in higher
dimension as in [13]. The Todd series are introduced by Brion-Vergne ([2]) in
the formulation of the Euler-Maclaurin formula for simple polytopes. The Todd
series of lattice cones have certain additivity under barycentric decomposition
(cf. [18]).

Higher dimensional Dedekind sums are introduced and investigated by many
authors in diverse contexts (e.g. Zagier [23], Chapman [4], Hu-Solomon [11]).
In particular, the generalization we take is an ‘inhomogeneous’ version of Chap-
man’s for which he obtained a nice reciprocity formula at the level of generating
function. If one puts pn = −1 and λ1 = λ2 = · · · = λn = 0 in Chapman’s def-
inition of higher dimensional generalized Dedekind sums, one obtains (2). On
the other hand, Chapman’s homogeneous version can be easily recovered from
the inhomogeneous version.

The method of this paper is continuation of [13]. But in higher dimension
we have some technical difficulties. We are lack of notion of continued fractions
and it is inevitable to replace the technique with nonsingular decomposition of
cones. As a result, we don’t have full control of the individual cones appearing
in the decomposition but the components supported by the facets of the original
cone. We will show that the inner cones do not contribute after reduction
modulo q. Then we read off the coefficients of the mod-q generating function
to obtain the fractional part as a Laurent polynomial in p1, . . . , pn−1, where
we need the notion of higher dimensional residue of rational functions with
non-field coefficient (cf. App. B.). The following is the first of our main results:

Theorem 1.2. Let (r1, r2, . . . , rn) ∈ Nn and (p1, . . . , pn−1, q) ∈ Nn with (pi, q)
= 1 for i = 1, . . . , n− 1. Suppose N = r1 + r2 + · · ·+ rn is even. Let pn = −1.
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Then for an integer dN,n determined by N and n,

dN,nq
N−n+1

r1! · · · rn!
sr1,r2,...,rn(q; p1, p2, . . . , pn−1)

is an integer and we have

dN,nq
N−n+1

r1! · · · rn!
sr1,...,rn(q; p1, . . . , pn−1)(3)

≡
∑

(m1,...,mn)

(−dN,n)

n∏
i=1

Bmi
mi!

(
mi − 1

ri − 1

)
pmi−rii mod q.

Here the summation is taken over the set of n-tuples (m1, . . . ,mn) of non-
negative even integers such that

∑n
i=1mi = N and at least one of mi is zero.

In the above, Bk denotes the k-th Bernoulli number. When N is odd, the
sum vanishes (Proposition 3.3). The dN,n can be given explicitly as

(4) dN,n := lcm
m1+···+mn=N
m1,...,mn≥0

{
denominator of

n∏
i=1

Bmi
mi!

}
.

As an application of the above theorem, we associate an exponential sum of
a certain Laurent polynomial to higher dimensional Dedekind sums. In higher
dimension, it is not as simple to check the nondegeneracy of a Newton polytope
and the result of Denef-Loeser ([7]) is not directly applicable as in [13]. Instead
we put a condition (B) in §6. Roughly speaking it is nondegeneracy of Newton
polytope in codimension one. This will give us a loose bound but enough to
fulfill the Weyl’s criterion for equidistribution. Consequently, we show that the
fractional part of

dqN−n

r1! · · · rn!
sr1,...,rn(q; p1, . . . , pn−1) ∈ 1

q
Z

are equidistributed in [0, 1) (or in R/Z) (Theorem 6.2). In particular, the higher
dimensional Dedekind sums introduced by Zagier ([23]) are equidistributed in
the unit interval when we take the fractional part.

This paper is composed as follows: The definition of Todd series of lattice
cones and the additivity under cone decomposition are reviewed in §2. A precise
relation between coefficients of Todd series and generalized Dedekind sums is
given in §3, which will be used in the subsequent sections. The integrality of
Todd coefficients and generalized Dedekind sums are shown in §4. A formula for
reduction mod q of generalized Dedekind sums is given in §5. In §6, we prove the
equidistribution of fractional parts of generalized Dedekind sums by estimating
the exponential sum of the associated Laurent polynomial. Finally, in §7 we
explicitly compute the Laurent polynomials for two cases: generalized Dedekind
sums in 3-dimension and Zagier-Dedekind sums. Additionally, two appendices
are attached: one on number of congruence solutions modulo prime power and
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the other on the notion of iterated constant term for rational functions with
coefficient from a general commutative ring.

Comment on notation

Throughout the paper, we often abbreviate a multi-index (r1, . . . , rn) to r.
By |r| and r! we denote r1+r2+· · ·+rn and (r1!) · · · (rn!) respectively. A lattice
vector (p1, . . . , pn−1, q) satisfying (pi, q) = 1 for i = 1, . . . , n − 1 is denoted by
(q; p1, . . . , pn−1). Again it is abbreviated to (q; p). The set of such vectors
(q; p) will be denoted by In.

2. Lattice cones and Todd series

2.1. Lattice cones

Consider the standard lattice Zn in Rn. We recall the notion of lattice cones
with simplicial structure. A m-simplicial lattice cone is an ordered m-tuple
(v1, v2, . . . , vm) of primitive lattice vectors vi in Zn such that the convex hull
of {v1, . . . , vm} does not contain the origin. We denote the simplicial cone
of (v1, v2, . . . , vm) by Cone(v1, v2, . . . , vm). Since we will deal only with sim-
plicial lattice cones in this paper, we often abbreviate simplicial lattice cones
to cones if there is no danger of confusion. The simplicial lattice cone corre-
sponding to a subtuple of (v1, v2, . . . , vm) is called a face of Cone(v1, . . . , vm).
A facet is a face of codimension one. The underlying topological space of
C = Cone(v1, v2, . . . , vm) is a closed subset of Rn

|C| = |Cone(v1, v2, . . . , vm)| := R≥0v1 + · · ·+ R≥0vm.

A m-dimensional simplicial cone C is said to be degenerate (resp. nonde-
genernate) if the vectors defining C are linearly dependent (resp. linearly in-
dependent). If m > n, then a m-simplicial cone is necessarily degenerate.
There is an obvious action of g ∈ GLn(Z) on the set of lattice cones, by
(v1, . . . , vm) 7→ (gv1, . . . , gvm). The nondegeneracy is preserved under GLn(Z)-
action.

Let C = Cone(v1, v2, . . . , vn) be a nondegenerate n-simplicial lattice cone.
We define following objects associated to C.

• A (n × n) integral matrix MC = (v1|v2| · · · |vn) where we take vi as
column vectors in Zn.

• A sublattice ΛC =
∑n
i=1 Zvi of Zn and the quotient group ΓC =

Zn/ΛC .
• A n-tuple of characters (χC1 , . . . , χ

C
n ) on Zn (or on ΓC):

χCj (v) := exp(2πiaj) if v =

n∑
j=1

ajvj .
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• The fundamental parallelepiped PC of the torus Rn/ΛC :

PC :=

{
n∑
i=1

aivi
∣∣ ai ∈ [0, 1) for i = 1, . . . , n

}
.

We denote by PC(Z) the set of lattice points in PC .

For a nondegenerate cone C, |ΓC | = |det(MC)|. A cone C is said to be
nonsingular if |det(MC)| = 1 or equivalently ΛC = Zn. Under GLn(Z)-action,
the nonsingularity and the characters χCi of C are preserved. The orientation
of C is the sign of det(MC). If there appears only a single cone C, we will often
abbreviate MC , ΛC , χCi and ΓC to M , Λ, χi and Γ, respectively.

Remark 2.1. The notion of simplicial cones defined above is different from that
appearing in usual texts of convex geometry. For a simplicial cone C, |C| is
generally referred as rational polyhedral cone. In this article, we stress more
on the simplicial structure of C. Let C̃ be a degenerate (n+ 1)-simplicial cone
such that one of the facet is a n-simplicial cone C and the opposite ray belongs
to |C|. Then one can relate a barycentric decomposition of n-simplicial cone
C as in the following subsection.

2.2. Barycentric and nonsingular decomposition

By a decomposition of a nondegenerate n-dimensional simplicial cone C, we
mean a finite set of n-dimensional nondegenerate simplicial cones

C = {C1, . . . , Cm}

satisfying

• |C| =
⋃m
i=1 |Cm| and |Ci| ∩ |Cj | = |Cij | for Cij a proper face of both

Ci and Cj for i 6= j. (Thus |Ci| for i = 1, . . . ,m have pairwise disjoint
interiors).
• each Ci has the same orientation with C.

If every nondegenerate cone of C is nonsingular, it is said to be nonsingular.
Barycentric subdivision is an example of decomposition of a nondegener-

ate cone. Let C be a nondegenerate lattice cone Cone(v1, . . . , vn). For a
nonzero primitive lattice vector v in |C| and 1 ≤ k ≤ n, let C(v, k) :=
Cone(v1, . . . , vk−1, v, vk+1, . . . , vn). The barycentric subdivision B(C, v) of C
by v is the set of cones

B(C, v) := {C(v, k) | 1 ≤ k ≤ n,C(v, k) is nondegenerate}.

It is easy to check that C(v, k) and C share the same orientation if C(v, k) is
nondegenerate. A barycentric subdivision is a typical example of a decompo-
sition of a cone. Notice that the number of cones in B(C, v) is

|B(C, v)| = min
F :face of C
v∈|F |

dimF.
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For example, if v is in the interior of C, B(C, v) consists of n cones. Or if
v = vi, then B(C, v) = {C}.

Let v be a primitive lattice vector of |C| and C = {Cα |α ∈ A} be a decom-
position of C. Let C(v) be a subset of C composed of Cα such that v ∈ |Cα|.
We denote by BC(v) another decomposition of C obtained by replacing those
D ∈ C which contains v with B(D, v):

BC(v) := {D ∈ C|v /∈ |D|} ∪
⋃

D∈C(v)

B(D, v).

The following technical lemma is a crucial step in this article.

Lemma 2.2. A nondegenerate n-simplicial lattice cone C admits a nonsingular
decomposition.

Proof. Let C = {C1, C2, . . . , Cm} be a decomposition of C. If |det(MCk)| = 1
for every k ∈ {1, . . . ,m}, then C is a nonsingular decomposition.

We use the induction on maxD∈C |det(MD)|. Then it is enough to construct,
starting from C, another (finer) decomposition C′ of C with property

max
D∈C′

|ΓD| < max
D∈C
|ΓD|.

Let k be such that |ΓCk | = maxD∈C |ΓD|. Since ΓCk 6= {0}, there exists
a non-zero lattice vector v in PCk(Z). Then it follows that for any lattice
cone D′ ∈ ∪D∈C(v)B(D, v), we have |ΓD′ | < |ΓCk |. In other words, in the
decomposition BC(v) of C, the cones (including Ck) in C which contain v are
decomposed into cones of smaller determinant. Thus BC(v) satisfies either

max
D∈BC(v)

|ΓD| < max
D∈C
|ΓD|

or the equality holds but the maximum is attained at fewer cones. In the latter
case, we can repeat the process with BC(v) in place of C. �

Remark 2.3. In the proof of the lemma, it is crucial to choose a vector v
in PC(Z). One may choose any primitive lattice vector in |C| to obtain a
subdivision. But this choice does not ensure smaller |ΓCk |.

For example, let us consider C = Cone(v1, v2) with v1 = (1, 0) and v2 =
(1, 2). Then |ΓC | = 2. The subdivision of C by v = (1, 1) is a nonsingular
decomposition. However for v′ = (2, 1) = 3

2v1 + 1
2v2, in the corresponding

barycentric subdivision, we have C1 = Cone(v′, v2) and C2 = Cone(v1, v
′) with

|ΓC1
| = 3

2 |ΓC | = 3 and |ΓC2
| = 1

2 |ΓC | = 1.

Remark 2.4. Suppose that a facet is generated by vectors which is a part of a
lattice basis. If we use the barycentric subdivision as in the lemma, the facet is
not decomposed and belongs to a unique nonsingular cone in the nonsingular
decomposition.
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2.3. Dual cones

For a nondegenerate lattice cone C = Cone(v1, . . . , vn) in Rn, let us define
its dual lattice cone Č = Cone(u1, . . . , un) lying in Hom(Rn,R) ' Rn. Let
{v∗1 , . . . , v∗n} be the basis dual to {v1, . . . , vn}. Then ui is the positive (integral)
multiple of v∗i which is primitive. Geometrically, ui is given as the primitive
inward normal vector to the i-th facet C(i) = Cone(v1, . . . , v̂i, . . . , vn). We
will write the dual vectors ui as row vectors in Zn, and similarly we define the
matrix MČ of Č as the (n× n)-matrix whose i-th row is ui. It can be written

as a product of a diagonal matrix with positive diagonal entries and M−1
C .

2.4. Todd series

Let C = Cone(v1, v2, . . . , vn) be a nondegenerate lattice cone in Rn. Define
the Todd series of C as

(5) ToddC(x) :=
∑
γ∈ΓC

n∏
i=1

xi
1− χCi (γ)e−xi

=
∑
r

ar(C)

r!
xr,

which is a holomorphic function of x = (x1, x2, . . . , xn) at a neighborhood of
0 in Cn. The variables x1, . . . , xn in (5) should be viewed as coordinates with
respect to {v1, . . . , vn} (See §2.5 below).

The Todd series is invariant under GLn(Z)-action on cones due to the invari-
ance of the characters of the cone. In particular, the Todd series of nonsingular
lattice cones in Rn are all equal to the Todd power series in n variables:

(6) Todd(x) =

n∏
i=1

xi
1− e−xi

=
∑
r

(−1)|r|
Br

r!
xr,

where the summation is over r = (r1, r2, . . . , rn) ∈ Zn≥0.

Since the summation of the values of χCi has Galois invariance, it is easy
to see that the Taylor series of ToddC has coefficients in Q. In the following
section, we will see that the coefficients of ToddC(x) are closely related to the
higher dimensional generalized Dedekind sums.

For a nonnegative integer N , let ToddNC (x) ∈ Q[x1, . . . , xn] be the homo-
geneous part of the total degree N of ToddC(x). It is called the N -th Todd
polynomial of C. It is the partial sum over |r| = N of the above sum and is
given by

ToddNC (x) =
1

N !

∂N

∂tN
ToddC(tx)

∣∣∣∣
t=0

.

The homogeneous part ToddN (x) of total degree N of Todd(x) is defined sim-
ilarly. It is called the N -th Todd polynomial in n variables.

(7) ToddN (x) = (−1)N
∑
|r|=N

Br

r!
xr.
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2.5. Additivity of Todd series

Definition 2.5. The normalized Todd series of a nondegenerate n-simplicial
cone C in Rn is a meromorphic function around 0

SC(x) :=
ToddC(x)

(detMC)x1x2 · · ·xn
in Cn with poles along the coordinate hyperplanes. The normalized Todd series
of a degenerate cone is 0.

For a nonnegative integer N , denote by SNC (x1, . . . , xn) the homogeneous
part of total degree N − n. It is a homogeneous rational function:

SNC (x) = ToddNC (x)/(detMC)x1x2 · · ·xn.
To deal with Todd series for various cones in V = Rn simultaneously, it is

necessary to view ToddC(x) and SC(x) as functions on V (or on V ⊗ C) by
taking variables x1, x2, . . . , xn as coordinates on V with respect to the ordered
basis {v1, v2, . . . , vn} if C = Cone(v1, v2, . . . , vn) is nondegenerate.

Definition 2.6. Let C = Cone(v1, v2, . . . , vn) be a nondegenerate n-simplicial
lattice cone in V = Rn. Let T (C) and S(C) be the meromorphic functions on
VC = V ⊗ C respectively given by

T (C) : x1v1 + · · ·+ xnvn 7→ ToddC(x),

S(C) : x1v1 + · · ·+ xnvn 7→ SC(x).

For a nonnegative integer N , the homogeneous polynomial TN (C) and the
homogeneous rational function SN (C) on V are defined similarly.

Let y1, y2, . . . , yn be the coordinates with respect to the standard basis of V .
Then the function S(C) is given by SC((y1, . . . , yn)(M−1

C )T ) ∈ Q((y1, . . . , yn))
in terms of these coordinates.

The following proposition describes the additivity of normalized Todd series
under barycentric subdivision. It is a restatement of [18, Theorem 3].

Proposition 2.7 (Pommersheim). Let C(v) = {C1, C2, . . . , Cn} be the barycen-
tric subdivision of C with respect to v ∈ PC . Then we have

S(C) = S(C1) + · · ·+ S(Cn) and SN (C) = SN (C1) + · · ·+ SN (Cn).

3. Dedekind sums and Todd coefficients

Let (q; p) = (q; p1, p2, . . . , pn−1) ∈ In. We will identify sj(q; p) using the
coefficients of the Todd series of cones of special type. For j = (j1, j2, . . . , jn) ∈
Nn, let us introduce tj(q; p) which is close to sj(q; p).

Definition 3.1. For (q; p) ∈ In and j ∈ Nn as above, we define tj(q; p) as

tj(q; p) :=

q−1∑
k1,k2,...,kn−1=0

Bj1

(
k1

q

)
· · ·Bjn−1

(
kn−1

q

)
Bjn

(〈∑n−1
i=1 piki
q

〉)
,
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where 〈x〉 = x− [x] denotes the fractional part of x ∈ R.

Let C = Cone(w1, w2, . . . , wn) be the cone generated by wi = ei (for i =
1, . . . , n−1) and wn = (p1, . . . , pn−1, q) where ei is the i-th standard unit vector
in Rn. Let us denote this cone by C(q; p). Note that wi are primitive and the
generators of the dual cone Č = Cone(u1, . . . , un) are ui = (0, . . . , q, . . . , 0,−pi)
with q in i-th coordinate for 1 ≤ i ≤ n− 1 and un = en.

They are coefficients of ToddC after multiplied by some power of q.

Proposition 3.2. Let C = C(q; p) be as above. Then we have

ToddC(x) =

∞∑
N=0

∑
|j|=N

(−1)NqN−n+1 tj(q; p)

j!
xj.

Proof. Expanding the denominators in (5), we have
(8)

ToddC(x) = x1x2 · · ·xn
∑
γ∈ΓC

∞∑
`1,...,`n=0

χ1(γ)`1 · · ·χn(γ)`ne−`1x1 · · · e−`nxn .

The above expansion is absolutely convergent in the region: (x1, . . . , xn) ∈ Rn>0

and is analytically continued to a neighborhood of 0.
The summation of χ1(γ)`1 · · ·χn(γ)`n over γ ∈ ΓC is 0 unless χ`11 · · ·χ`nn

is the trivial character of ΓC . In this case, the sum is equal to |ΓC | = q. It
happens if and only if

∑
`iw
∗
i =

∑
`iui/q ∈ Zn. Thus by summing over γ ∈ ΓC

first in (8), we may rewrite ToddC as summation over the lattice points inside
|Č|:

ToddC (x) = qx1x2 · · ·xn
∑

w∈|Č|∩Zn
e−

∑n
i=1〈w,wi〉xi

= qx1 · · ·xn
∑

u∈PČ∩Zn

e−
∑n
i=1〈u,wi〉xi

(1− e−qx1) · · · (1− e−qxn)
.

(9)

Here we identified w ∈ |Č|∩Zn with w = u+`1u1 + · · ·+`nun for u ∈ PČ(Z)
and `1, . . . , `n ∈ Z≥o. As PČ(Z) is given by

PČ(Z) =

{
n−1∑
i=1

ki
q
ui +

〈
p1k1 + · · ·+ pn−1kn−1

q

〉
un

∣∣∣ for ki = 0, 1, . . . , q − 1

}
we obtain the wanted formula for ToddC(x):

∑
j∈Zn≥0

∑
k1,...,kn−1

(−1)|j|q|j|−n+1
Bj1

(
k1

q

)
· · ·Bjn−1

(
kn−1

q

)
Bjn

(〈∑n−1
i=1 piki
q

〉)
j!

xj,

where the inner sum is over (k1, . . . , kn−1) ∈ {0, . . . , q − 1}n. �

From the relation of the Todd series and the generalized Dedekind sums,
one can easily obtain the following vanishing property.
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Proposition 3.3. If |j| is odd, then sj(q; p) vanishes.

Proof. This generalizes Corollary 4.2 in [13] and the proof is similar. �

If j > 1, B̃j(t) = Bj(t) on [0, 1). Thus if j1, . . . , jn > 1, we have

sj(q; p) = tj(q; p).

But if j contains 1, as B̃1(0) 6= B1(0), we need some care. Let i ∈ Zn>0 and
(q; p) = (q; p1, . . . , pn−1) ∈ In. We set pn = −1. (This convention will be also
used in later sections.) For a subset T of {1, . . . , n}, we set iT = (ik)k 6∈T . We
set p̃T = (p′j1 , . . . , p

′
jr−1

) ∈ Zr−1 for {j1, . . . , jr} = {1, . . . , n}\T (as ordered

sets) and p′jipjr ≡ −pji (mod q) for each i = 1, . . . , r − 1. Moreover we may
impose the condition 1 ≤ p′ji < q for each i. This uniquely determines p̃T .
Then we have the following conversion formula between si and ti:

Theorem 3.4. For i = (i1, i2, . . . , in), let J = {j | ij = 1}. Suppose |i| is even.
Then we have

si(q; p) = ti(q; p) +
∑
∅6=T⊂J

(
1
2

)|T |
tiT (q; p̃T ),

ti(q; p) = si(q; p) +
∑
∅6=T⊂J

(
1
2

)|T |
siT (q; p̃T ),

where the second summation runs over nonempty subsets T ⊂ J with |T | even.

Proof. Setting kn = p1k1 + p2k2 + · · ·+ pn−1kn−1, one can write

si(q; p) =
∑

kj 6=0,∀j∈J

Bi1

(
k1

q

)
· · ·Bin

(
kn
q

)

= ti(q; p)−
∑

kj=0,∃j∈J

Bi1

(
k1

q

)
· · ·Bin

(
kn
q

)
.

Applying the inclusion-exclusion principle, we have∑
kj=0,∃j∈J

Bi1

(
k1

q

)
· · ·Bin

(
kn
q

)
=

∑
∅6=T⊂J

(−1)|T |+1

(
−1

2

)|T |
tiT (q; p̃T ).

This follows from∑
kj=0,∀j∈T

Bi1(
k1

q
) · · ·Bin(

kn
q

)

= B
|T |
1

∑
(kj1 ,...,kjr )

pj1kj1+···+pjrkjr=0

Bij1

(
kj1
q

)
· · ·Bijr

(
kjr
q

)

=

(
−1

2

)|T | ∑
(k1,...,kjr−1

)

Bij1

(
kj1
q

)
· · ·Bijr

(
p′j1kj1 + · · ·+ p′jr−1

kjr−1

q

)
,



856 H. CHAE, B. JUN, AND J. LEE

where T ⊂ J and {j1, . . . , jr} = {1, . . . , n} \ T .
The proof of the 2nd formula is identical and we omit the proof. �

4. Integrality of generalized Dedekind sums

The goal of this section is to prove the integrality of generalized Dedekind
sums.

Theorem 4.1. Let N ∈ Z≥0 and C = C(q; p) for (q; p) = (q; p1, . . . , pn−1) ∈
In. Then we have

ToddNC (x) = qx1 · · ·xnSNC (x) ∈ 1

d
Z[x1, x2, . . . , xn]

for some positive integer d depending only on N and n (e.g. d = dN,n of (4)).

Proof. Let wi = ei for 1 ≤ i ≤ n− 1 and wn = (p1, . . . , pn−1, q). After Lemma
2.2, C = Cone(w1, . . . , wn) admits a nonsingular decomposition C obtained by
successive barycentric subdivision. Then we have by Proposition 2.7.

(10) SN (C) =
∑
D∈C

SN (D).

Note that any proper subset of {w1, . . . , wn} can be extended to a basis of Zn.
As a result, the j-th facet C(j) = Cone(w1, . . . , ŵj , . . . , wn) is not affected by
the subdivisions as above and is contained in a unique cone Dj in C. Dj is

given as Cone(v
(j)
1 , . . . , v

(j)
n ) with v

(j)
i = wi for i 6= j and v

(j)
j sitting inside C.

The cones Dj for j = 1, . . . , n are the outermost cones in C. Fig. 1 describes
the outer cones in dimension 3.

Since detMC = q, we have

(11) wj =
∑
i 6=j

ajiv
(j)
i + qv

(j)
j for some aji ∈ Z.

Let y1, . . . , yn be the coordinate functions with respect to the standard basis.

Let D = Cone(v
(D)
1 , . . . , v

(D)
n ) ∈ C. Then MD ∈ SLn(Z) and thus v

(D)∗
i ∈

Z[y1, . . . , yn] is a primitive linear form. We have

(12) SN (D) = (−1)N
∑

m1+···+mn=N

n∏
i=1

Bmi
mi!

(v
(D)∗
i )mi−1.

Since d = dN,n is explicitly given as (4),

dSN (C) = d
∑
D∈C

SN (D) ∈ 1∏
D∈C

∏n
i=1(v

(D)∗
i )

Z[y1, . . . , yn].

Moreover, since SN (C) has poles along the facets of C and Z[y1, . . . , yn] is a
UFD,

(13) dv
(1)∗
1 · · · v(n)∗

n SN (C) ∈ Z[y1, . . . , yn].
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w1 w2

w3

v
(3)
3

v
(1)
1

v
(2)
2

D2 = Cone(w1, v
(2)
2 , w3) D1 = Cone(v

(1)
1 , w2, w3)

D3 = Cone(w1, w2, v
(3)
3 )

Figure 1. Projective picture of the outer cones in dim=3

Recall x1, . . . , xn are the coordinates with respect to the basis {w1, . . . , wn}.
For i 6= j, after (11),

(14) v
(j)∗
i =

n∑
k=1

〈v(j)∗
i , wk〉w∗k = w∗i + ajiw

∗
j = xi + ajixj .

Similarly, v
(j)∗
j = qxj . Therefore (13) turns out to be

(15) dqx1 · · ·xnSNC (x) ∈ 1

qn−1
Z[x1, . . . , xn].

Let Cin = C \ {D1, . . . , Dj} be the set of inner cones in the nonsingular
decomposition. We have

SN (C) =
∑
D∈Cin

SN (D) +

n∑
j=1

SN (Dj).

Note that both

(16)

d
∑
D∈Cin

SN (D) = dSN (C)− d
n∑
j=1

SN (Dj), and

dqx1 · · ·xn
n∑
j=1

SN (Dj) = d

n∑
j=1

x1 · · · x̂j · · ·xn(v
(j)∗
j )SN (Dj)

belong to 1∏n
j=1

∏
i6=j(v

(j)∗
i )

Z[y1, . . . , yn]. Therefore in x1, . . . , xn, we have

dqx1 · · ·xnSNC (x) ∈ 1∏n
j=1

∏
i 6=j(xi + ajixj)

Z[x1, . . . , xn].
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Together with (15), this completes the proof because

1∏n
j=1

∏
i6=j(xi + ajixj)

Z[x1, . . . , xn] ∩ 1

qn−1
Z[x1, . . . , xn] = Z[x1, . . . , xn].

�

Corollary 4.2. For r = (r1, r2, . . . , rn) ∈ Zn>0, let N = |r|. Let d′ = d
r! for d

as in Theorem 4.1. Then for any (q; p) = (q; p1, . . . , pn−1) ∈ In, we have

d′qN−n+1sr(q; p) ∈ Z.

Proof. We use induction on n. By the last theorem, d′qN−n+1tr(q; p) is an
integer. Since 2kdN−k,n−k divides dN,n for any integer 0 ≤ k ≤ n, we apply
the induction hypothesis to the second equation (multiplied by d′qN−n+1) in
Theorem 3.4. This completes the proof. �

5. Reduction mod q of generalized Dedekind sums

In this section, we keep the notations of last section: C is the lattice cone
in Rn generated by w1 = e1, . . . , wn−1 = en−1, wn = (p1, . . . , pn−1, q). The
variables x1, . . . , xn are the coordinates with respect to B = {w1, . . . , wn}. In

the setting of the proof of Theorem 4.1, (v
(j)∗
i ) = xi + ajixj (See (14)). Now

we consider the mod-q reduction of the integral polynomial dToddNC (x) =
dqx1 · · ·xnSNC (x) where d = dN,n.

When we take mod-q reduction of dToddNC (x), we will see the contribution
of the cones in Cin vanish. Note that the reduction mod q can be extended to

1∏n
j=1

∏
i6=j(xi+a

j
ixj)

Z[x1, . . . , xn] as none of (xi+a
j
ixj) have common factor with

q. From (16), we have

d
∑
D∈Cin

SN (D) ∈ 1∏n
j=1

∏
i6=j(xi + ajixj)

Z[x1, . . . , xn].

Thus we have dqx1 · · ·xn
∑
D∈Cin S

N (D) ≡ 0 (mod q). This implies

(17) dqx1 · · ·xnSN (C) ≡
n∑
j=1

dqx1 · · ·xnSN (Dj) (mod q).

In x1, . . . , xn,

(18) (v
(j)∗
j ) = qxj for 1 ≤ j ≤ n,

and for i 6= j,

(v
(j)∗
i ) ≡


xi − pip−1

j xj mod q if j 6= n and i 6= n,

xi + p−1
j xj mod q if j 6= n and i = n,

xi + pixj mod q if j = n.

Putting pn = −1, one can write (v
(j)∗
i ) in simpler form:

(19) (v
(j)∗
i ) ≡ xi − pip−1

j xj mod q for any i 6= j.
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It is important to note the reduction mod q of (v
(j)∗
i ) for i 6= j does not depend

on the lattice vector v
(j)
j . We remark that above formula is explicit form of

(14) modulo q.
The following proposition gives an explicit formula for mod-q reduction of

the integer dqN−n+1tr(q; p)/r!.

Proposition 5.1. For (q; p) ∈ In and r ∈ Zn≥1, let N = |r| and d = dN,n.

Then dqN−n+1tr(q; p)/r! is an integer and

(20)
dqN−n+1

r!
tr(q; p) ≡

∑
m

(−d)
Bm

m!

n∏
i=1

(
mi − 1

ri − 1

)
pmi−rii (mod q),

where the summation runs over the set of n-tuples m = (m1, . . . ,mn) ∈ Zn≥0

with |m| = N such that at least one of its coordinates is zero.

Proof. Let C = C(q; p). Then dqN−n+1

r! tr(q; p) is the coefficient of xr in the

Todd polynomial dToddNC (x) = dqx1SNC (x) (recall x1 = x1x2 · · ·xn) and can
be computed as the iterated constant term iCTx1,x2,...,xn = CTx1

◦CTx2
◦ · · · ◦

CTxn of dqx1SNC (x)/xr with respect to A = {x1, . . . , xn} (cf. App. B).
Using (17), we have to calculate the iterated constant term with respect to

A of (dqx1/xr)SN (Dj) (mod q) for each 1 ≤ j ≤ n. As Dj is nonsingular,
applying (12), (18) and (19), we have

dqx1SN (Dj)

≡ (−1)Nqx1
∑

m∈MN

d
Bm

m!

∏
1≤i≤n
i 6=j

(xi − pip−1
j xj)

mi−1 · (qxj)mj−1 (mod q),

where MN = {m ∈ Zn≥0 | |m| = N}.
If mj ≥ 1, the summand corresponding to m = (m1, . . . ,mn) belongs to

1∏
i6=j(xi+a

j
ixj)

Z[x1, . . . , xn]. Multiplied by qx1 · · ·xn, it vanishes as a rational

function with coefficient in Z/qZ. Thus it is enough to count m with mj = 0
in the summation and from the last equation we have

dqx1

xr
SN (Dj) ≡ (−1)N

∑
m∈MN

mj=0

d
Bm

m!

∏
1≤i≤n
i6=j

(xi − pip−1
j xj)

mi−1

xri−1
i

· 1

x
rj
j

(mod q).

We compute the iterated constant terms of individual summands. As mj = 0,

CTxj+1
◦ · · · ◦ CTxn

∏
1≤i≤n
i 6=j

(xi − pip−1
j xj)

mi−1

xri−1
i

· 1

x
rj
j

=

j−1∏
i=1

(xi − pip−1
j xj)

mi−1

xri−1
i

·
n∏

i=j+1

(
mi − 1

ri − 1

)
(−pip−1

j )mi−ri · x
∑
i≥j mi−ri

j .
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Putting e :=
∑
i≥jmi − ri, we obtain CTxj of the last equation depending on

the sign of e: if e > 0, then it vanishes. If e ≤ 0, then it is equal to

∑
a1,...,aj−1

j−1∏
i=1

(
mi − 1

ai

)
(−pip−1

j )aixmi−ri−aii ·
n∏

i=j+1

(
mi − 1

ri − 1

)
(−pip−1

j )mi−ri ,

where the summation is over non-negative integers a1, . . . , aj−1 satisfying a1 +
· · ·+aj−1 = −e =

∑
i≥j ri−mi. Now it is direct to see that CTx1

◦CTx2
◦ · · ·◦

CTxj−1
of the above is supported at ai = mi − ri for 1 ≤ i ≤ j − 1. This can

be satisfied only if mi ≥ ri for 1 ≤ i ≤ j − 1. A priori unless mi > 0 for
1 ≤ i ≤ j − 1, the iterated constant term vanishes (We need this later). Hence
for m ∈MN satisfying (a)

∑
i≥jmi− ri ≤ 0 and (b) mi ≥ ri for 1 ≤ i ≤ j− 1,

we have

iCTx1,x2,...,xn

∏
1≤i≤n
i6=j

(xi − pip−1
j xj)

mi−1

xri−1
i

· 1

x
rj
j

=
∏

1≤i≤n
i 6=j

(
mi − 1

ri − 1

)
(−pip−1

j )mi−ri

=
∏

1≤i≤n
i 6=j

(
mi − 1

ri − 1

)
pmi−rii · (−p−1

j )
∑
i6=j mi−ri = (−1)

n∏
i=1

(
mi − 1

ri − 1

)
pmi−rii ,

where the last equality comes from
∑
i 6=jmi− ri = rj −mj = rj and

(
mj−1
rj−1

)
=( −1

rj−1

)
= (−1)rj−1. Note that (b) implies (a) since

∑n
i=1mi − ri = 0.

Let Mj be the subset of MN consisting of m = (m1, . . . ,mn) with mj = 0
and mi ≥ ri for 1 ≤ i ≤ j − 1. Then

(21) iCTx1,x2,...,xn

dqx1

xr
SN (Dj) ≡

∑
m∈Mj

(−d)
Bm

m!

n∏
i=1

(
mi − 1

ri − 1

)
pmi−rii .

Since M1, . . . ,Mn are disjoint subsets of MN , summing the above over 1 ≤
j ≤ n, finally we obtain the formula. �

Now the proof of Theorem 1.2 follows from the previous proposition but
needs some care for the difference of tr and sr.

Proof of Theorem 1.2. Since sr(q; p) vanishes for odd N = |r|, we will assume
that N is even. In the summation of (20), nontrivial summand occurs only
for m such that mi is even or mi = 1 because Bm vanishes for odd m > 1.
Further, if mi 6= 0, then mi ≥ ri due to the binomial coefficients. In particular,
for m = (m1, . . . ,mn), if mi = 1, ri is necessarily 1.
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Let us denote by M the set of such m = (m1, . . . ,mn) (depending on r!):

M := {m ∈ Zn≥0 | |m| = N , mi = 0 for some i,

if mi 6= 0, then mi is either even or 1 and mi ≥ ri}.

For simplicity let φ(m,p) = (−d)Bm

m!

∏n
i=1

(
mi−1
ri−1

)
pmi−rii in (20). Thus

d′qN−n+1tr(q; p) ≡
∑
m∈M

φ(m,p) (mod q),

where d′ = d/r! = dN,n/r!.
Now let J = { 1 ≤ j ≤ n | rj = 1 }. For T ⊂ J , let M(T ) be a subset of M :

M(T ) := {m ∈M | mj = 1 for j ∈ T and mj 6= 1 if j 6∈ T}.

We need to show

d′qN−n+1sr(q; p) ≡
∑

m∈M(∅)

φ(m,p) (mod q).

Note that M is the disjoint union of M(T ) for T running over subsets of J .
In fact, M(T ) is nonempty only for T of even cardinality.

Now we use induction on |J |. If |J | ≤ 1, then M(∅) = M . Using Theorem
3.4, tj = sj and the claim holds.

In general, let T be a nonempty subset of J of even cardinality |T | = k.
Then it is easy to see that the partial sum of φ(m,p) over m ∈ M(T ) is, by
induction assumption, congruent to

(−1

2
)kd′qN−n+1srj1 ,...,rjn−k (q; pTj1 , . . . , p

T
jn−k−1

) ≡
∑

m∈M(T )

φ(m,p) (mod q),

where jT and p̃T are as defined in Theorem 3.4. This finishes the proof by the
same theorem. �

6. Equidistribution of generalized Dedekind sums and exponential
sums

Given r = (r1, . . . , rn) ∈ Zn>0, let N = |r|. Let fr(p) be the right hand side
of (3) considered as a Laurent polynomial in p = (p1, . . . , pn−1) with integral
coefficients. For (q; p) ∈ In, we have by Theorem 1.2

(22)

〈
dN,nq

N−n

r!
sr(q; p)

〉
=

〈
1

q
fr(p)

〉
,

where 〈t〉 = t− [t] ∈ [0, 1) denotes the fractional part of t and in the right side
we take p−1

i to be an inverse modulo q.
The goal of this section is to show the equidistribution of this sequence of

numbers for varying (q; p) with fixed r. For x ∈ R>0, let In(x) be the set of
(q; p) ∈ In with q < x and 1 ≤ pi < q.
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Following Weyl ([22]), we say a sequence {a(q;p) | (q; p) ∈ In} in [0, 1) is
equidistributed, if for any nonzero integer k

(23) lim
x→∞

1

|In(x)|
∑

(q;p)∈In(x)

exp
(
2πik · a(q;p)

)
= 0.

For a Laurent polynomial f in variables x1, x2, . . ., we consider the following
condition.

Basic Assumption (B): For some variable xi, there exists only one term in f
of highest degree > 0 in xi.

Proposition 6.1. Suppose f(x1, . . . , xn−1) ∈ Z[x±1 , x
±
2 , . . . , x

±
n−1] satisfies the

assumption (B). Then the fractional parts of f(p)/q for (q; p) ∈ In are equidis-
tributed in the above sense of Weyl.

We immediately have the following.

Theorem 6.2. Let r = (r1, . . . , rn) ∈ Zn>0 and suppose |r| is even. Then the
fractional parts of the following generalized Dedekind sums for varying (q; p) ∈
In

dN,nq
N−n

r!
sr(q; p)

are equidistributed in [0, 1).

The Laurent polynomial fr of (3), which gives the fractional part of the
generalized Dedekind sums sr, satisfies (B). For example, the term of the high-

est degree in x1 is xN−r11 x−r22 · · ·x−rn−1

n−1 with some nonzero integral coefficient.
Thus the theorem follows from the previous proposition.

The proof of Proposition 6.1 consists of three steps. At each step, we es-
timate the following exponential sums for q a prime, a prime power and any
composite number, respectively. Then these together with the estimation of
the order of In(x) complete the proof. For a positive integer q, let K(f, q) be
the following exponential sum.

(24) K(f, q) :=
∑
p

eq (f (p)) ,

where the summations are over p ∈ Zn−1 with 1 ≤ pj < q relatively prime to
q (1 ≤ j ≤ n− 1) and eq(x) := exp(2πix/q).

Proposition 6.3. There exists a constant C1 depending only on f such that
we have for almost all prime q (hence for any prime q if we enlarge C1),

|K(f, q)| ≤ C1q
(n−1)− 1

2 .

Proof. Note the counting gives the trivial estimate ≤ qn−1. When f is a Lau-
rent polynomial in one variable, we apply (3.5.2) in [6] with X0 = P1. One can
put C1 = ν0(f) + ν∞(f), where νz(f) is the order of the pole of f at z.



EQUIDISTRIBUTION OF DEDEKIND SUMS 863

In general, suppose f satisfies (B) for x1. In the sum over p1, . . . , pn−1 of
(24), we apply the above one-variable estimate for the sum over p1 and apply
the counting estimate for the sum over p2, . . . , pn−1. �

Proposition 6.4. There exist a constant C2 and integers d > 0, D depending
only on f such that for any prime power q relatively prime to D, we have

|K(f, q)| ≤ C2q
(n−1)− 1

3d .

Proof. Let q = pα with p a prime and α ≥ 2. We assume f satisfies (B) for the
first variable x1. As before, for the exponential sum over p2, . . . , pn−1 we apply
the trivial estimate. For the exponential sum over p1, we apply Lemmas 12.2
and 12.3 of [12] when α is even and odd, respectively. More precisely, suppose
α = 2β is even. Then we have

K(f, p2β) =
∑

p2,...,pn−1

pβ
∑
p1

ep2β (f (p1, p2, . . . , pn−1)) ,

where the second sum is over the set A1 of zeroes of ∂1f(x1, p2, . . . , pn−1) in
(Z/pβZ)∗. By Corollary A.2 in Appendix A, we have |A1| ≤ d2pβ−β/d where
d = ν0(∂1f) + ν∞(∂1f) is the constant as in the proof of the last proposition.
To apply the corollary, the coefficient D of the highest degree (with respect to
x1) term in ∂1f should be relatively prime to p. This excludes only finitely
many primes.

Suppose q = p2β+1 with β ≥ 1. Then we have

K(f, p2β+1) =
∑

p2,...,pn−1

pβ
∑
p1

ep2β+1 (f (p1, . . . , pn−1))Gp(p1, . . . , pn−1),

where the second sum is over the same subset A1 of (Z/pβZ)∗ as above and
Gp(p1, . . . , pn−1) is an exponential sum over Z/pZ. Since |Gp| ≤ p trivially, we
obtain

|K(f, p2β+1)| ≤ qn−2pβ+1|A1| ≤ d2q(n−2)p2β+1− βd ≤ d2q(n−1)− 1
3d .

This completes the proof. �

Proposition 6.5. Let d and D be as in Proposition 6.4. Then for any ε > 0
and any integer q > 1 relatively prime to D, we have

|K(f, q)| � q(n−1)− 1
3d+ε.

Proof. From the Chinese remainder theorem, we have

K(f, q1q2) = K(f, q1)K(f, q2),

when q1, q2 > 1 are relatively prime integers. Hence from the last proposition,
we have, for q prime to D,

(25) |K(f, q)| ≤ (C2)
ω(q)

q(n−1)− 1
3d ,

where ω(q) is the number of prime factors of q and C2, d,D are as in Proposition
6.4.
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For any ε > 0, we have for sufficiently large q

C
ω(q)
2 � qε,

which follows from the well-known estimate: ω(q) ∼ log q
log log q . This completes

the proof. �

For x > 1 let ϕ(x) := |(Z/[x]Z)∗| be the Euler’s ϕ-function.

Proposition 6.6. For any ε > 0, we have

|In(x)| =
∑
q<x

ϕ(q)n−1 � xn−ε.

Proof. It is known that for all but finitely many positive integers q,

ϕ(q) ≥ q

eγ log log q
.

Since for any ε > 0, there is a positive number Cε such that

log log q ≤ Cεqε,
we have that∑

q<x

ϕ(q)n−1 �
∑
q<x

(
q

eγ log log q

)n−1

�
∑
q<x

q(1−ε)(n−1) � xn−ε.
�

Now we come to the proof of Proposition 6.1. This will be done by combining
previous estimates.

Proof of Proposition 6.1. To estimate
∑

0<q<x |K(f, q)|, we need to extend the
result of Proposition 6.5 to arbitrary integer q > 1. For D, d given as in
Proposition 6.4, we define a multiplicative arithmetic function ηD by

ηD(q) :=
∏
p|D

p:prime

pordp q.

Since we have a trivial estimate |K(f, q)| ≤ qn−1, if we multiply the right hand
side of inequalities in Propositions 6.4, 6.5 and (25) by ηD(q)1/3d, then the
inequalities hold for any q > 1. By (1.79) in [12], for sufficiently large x, we
have ∑

q<x

ηD(q)1/3d ≤ x
∏
p|D

(
1− p−1+ 1

3d

)−1

.

By the partial summation, we have∑
q<x

q(n−1)− 1
3d+ε · ηD(q)1/3d � xn−

1
3d+ε.

Together with the last two propositions, this implies

1

|In(x)|
∑

0<q<x

|K(f, q)| → 0 as x→∞.
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This completes the proof of Proposition 6.1. �

7. Examples

In the following, we present the Laurent polynomials associated to some
cases of generalized Dedekind sums for small indices (thus including small di-
mension). Note that the 2-dimensional case is thoroughly studied in [13]. The
cases considered here are generalized Dedekind sums in 3-dimension (i.e., n = 3)
and Dedekind-Zagier sums (i.e., r = (1, 1, . . . , 1)) in [23].

7.1. Three dimensional Dedekind sums

Let (r1, r2, r3) = (6, 4, 2). In this case, n = 3 and N = 12. We have
d12,3 = 212 · 36 · 53 · 72 · 11 · 13. Let

A1,2 = 15202p−6
1 p−4

2 , A2,3 = 638484p6
1p
−4
2 , A1,3 = 228030p−6

1 p8
2,

A1 = 382200p−6
1 p6

2 + 315315p−6
1 p4

2 + 143000p−6
1 p2

2 + 21021p−6
1 ,

A2 = 573300p4
1p
−4
2 + 189189p2

1p
−4
2 + 14300p−4

2 ,

A3 = 63063p2
1 + 28600p2

2.

Then fr is the sum of all the Laurent polynomials above. The Laurent polyno-
mials supported on faces of the Newton polygon ∆∞(fr) of fr are (minus of)
A1,2, A2,3, A1,3, A1,2 +A2 +A2,3, A1,3 +A1 +A1,2 and A2,3 +A3 +A1,3. The
Laurent polynomial fr(p1, p2, . . . , pn−1) is easily checked to be nondegenerate
with respect to its Newton polygon in the sense of Denef-Loeser (cf. [7]) and
the associated exponential sum has actually a stronger Weil type bound.

7.2. Dedekind-Zagier sums

In [23], the Dedekind-Zagier sum d(p; a1, . . . , an) is investigated. It is a
cotangent sum defined for a positive integer p and even number of integers
a1, . . . , an prime to p. By [23, Theorem in p. 157], it is a special case of the
higher dimensional generalized Dedekind sums considered here:

(26) d(p; a1, . . . , an) = 2np s1,...,1(p; a′1, . . . , a
′
n−1),

where a′i is an integer with ana
′
i ≡ −ai (mod p) for 1 ≤ i ≤ n− 1. From (26)

and Theorem 1.2, we immediately deduce the following.

Proposition 7.1. Let p, a1, a2, . . . , an be as above (with n even). And let
d = dn,n. Then we have

d

2n
d(p; a1, . . . , an) ∈ Z.

Moreover,

(27)
d

2n
d(p; a1, . . . , an) ≡

∑
m

(−d)
Bm

m!

n∏
i=1

ami−1
i (mod p),
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where the summation is over the set of n-tuples m = (m1, . . . ,mn) of non-
negative even integers with

∑n
i=1mi = n.

Note that the result on the denominator of d(p; a1, . . . , an) here is not sharp.
After all, d = dn,n depends only on n, not on p. Since we consider Dedekind
sums for varying p, we need a constant independent of p. A more precise result
is given in [23, Theorem in p. 160]. It would be interesting to compare this
bound with ours.

For small n, the dn = dn,n are given by d2 = 22 · 3, d4 = 24 · 32 · 5, d6 =
26 · 33 · 5 · 7, d8 = 28 · 34 · 52 · 7, d10 = 210 · 35 · 52 · 7 · 11, . . ..

Let ToddNev(x1, . . . , xk) be the totally even part of N -th Todd polynomial in
k variables (i.e., sum of terms which are of even degree in each variable). Then
(27) can be written as

d

2n
d(p; a1, . . . , an) ≡ (−d)

Toddnev(a1, . . . , an)

a1 · · · an
(mod p).

For example if n = 4, then dn,n = 720 and

(−720) Todd4
ev(a1, . . . , a4) =

4∑
i=1

a4
i − 5

∑
1≤i<j≤4

a2
i a

2
j .

Appendix A. Number of congruence solutions modulo a prime
power

In this appendix, we prove a simple estimate of the number of solutions of
a polynomial congruence equation modulo a prime power.

Proposition A.1. Let f ∈ Z[x] be an polynomial of degree d > 0 and let p be
a prime which does not divide the coefficient of xd. If r ∈ Z/pZ is a root of
f(x) ≡ 0 mod p of multiplicity m, then for n ≥ 2 we have

|{z ∈ Z/pnZ | f(z) ≡ 0 mod pn, z ≡ r mod p}| ≤ kpn−d
n
m e,

where 1 ≤ k ≤ m is an integer depending on f and r, and dae denotes the
smallest integer greater than or equal to a.

Proof. When m = 1, this is a usual version of Hensel’s lemma. We assume
m ≥ 2. And by replacing f(x) by f(x + r̃) (r̃ ∈ Z being a lift of r), we
may assume r = 0. By the polynomial form of Hensel’s lemma, there exists a
decomposition f(x) = g(x)h(x) in Zp[x] lifting f(x) = xmh̄(x) in Z/pZ[x]. In
other words, there exists polynomials g(x), h(x) ∈ Zp[x] with f(x) = g(x)h(x)
such that g(x) is monic, relatively prime to h(x) and g(x) ≡ xm mod p.

Let g(x) = g1(x)m1 · · · gk(x)mk be the decomposition as a product of ir-
reducible polynomials in Qp[x] (we can take them in Zp[x]) and for each i,

let αi,1, αi,2, . . . , αi,di be the roots of gi(x) in an algebraic closure Qp of Qp
(di = deg gi). Recall that the nonarchimedean norm | |p on Qp is canonically
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extended to Qp and the same is true for ordp = − logp | · |p. For α ∈ Zp with
α ≡ 0 mod p, we have |h(α)|p = 1 and

|f(α)|p =

k∏
i=1

|(α− αi,1) · · · (α− αi,di)|
mi
p =

k∏
i=1

|α− αi|dimip ,

where we have put αi = αi,1. Hence if ordp f(α) ≥ n, then there exists 1 ≤ i ≤
k with

ordp(α− αi) ≥
n

d1m1 + · · ·+ dkmk
=

n

m
.

This determines α modulo pd
n
m e. Hence the set A of α ∈ pZp satisfying the

above inequality is stable under the translation action of pnZp and |A/pnZp| ≤
pn−d

n
m e. �

Corollary A.2. Let f ∈ Z[x] be an polynomial of degree d > 0 and let p be a
prime which does not divide the coefficient of xd. Then we have for n ≥ 2

|{z ∈ Z/pnZ | f(z) ≡ 0 mod pn}| ≤ clpn−d
n
l e ≤ d2pn−d

n
d e,

where c is the number of distinct roots of f(x) ≡ 0 mod p and l is the maximum
of multiplicity of these roots.

Appendix B. Iterated constant term and multidimensional residue
in general coefficient

The goal of this appendix is to introduce the notion of rational functions
with coefficient of a general commutative ring R and to check the definability
of the iterated residue of a rational function in several variables in the sense of
Parshin ([17]). As the result here is straightforward, we will briefly state the
idea how it works.

Definition B.1. A rational function in variables x1, . . . , xn with coefficients
in R is an element of the localized ring of R[x1, . . . , xn] by the multiplicative
system of nonzero divisor polynomials. We denote the ring of rational functions
by R(x1, x2, . . . , xn).

In one variable case, the Cauchy integral formula applied to a Laurent series
f(x) =

∑
n anx

n ∈ R[[x]][x−1] computes the constant term

CT(f) := a0 = Resx=0 f(x)
dx

x
.

Without further assumption, the coefficient of degree n is identified as

an := Resx=0 x
−nf(x)

dx

x
.

If R is a field, every rational function has a Laurent series at 0. However,
for a rational function with coefficients of a general commutative ring, it is not
always the case. We say a rational function is admissible if it has a Laurent
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series. For an admissible function, the constant term is well-defined by the
Cauchy integral formula as above.

Here we give a necessary and sufficient condition for a rational function in
a variable to be admissible.

Lemma B.2. A nonzero rational function f(x) = g(x)
h(x) is admissible if and

only if it has a factorization

f(x) =
1

xn
a(x)

u(x)

such that a(x), u(x) ∈ R[x] with a(0) 6= 0 and u(0) ∈ R×.

This condition can be stated to a ratio g(x)
h(x) of two power series g(x), h(x) ∈

R[[x]]. It is equivalent to saying u(x) ∈ R[[x]]×. Conversely, the previous
lemma explains why any rational function with coefficient in a field admits
Laurent series expansion.

When there are many variables we need to consider the Parshin’s residue.
For a formal distribution φ(x1, x2, . . . , xn) =

∑
I∈Zn aIx

I ∈ R[[x±1 , . . . , x
±
n ]],

one can apply the multivariable version of the Cauchy integral formula so as
to define the constant term:

CT(φ) = a0...0 = Res0 φ(x1, . . . , xn)
dx1

x1
· · · dxn

xn
.

As in the 1 variable case, we need to associate a formal distribution to a
rational function f(x1, . . . , xn):

ι : f(x1, . . . , xn) 7→
∑
I∈Zn

aIx
I ∈ R[[x±1 , . . . , x

±
n ]].

Then the constant term is well-defined as stated above (depending on ι).

CTι(f) = a0...0 = Res0 ι (f(x1, . . . , xn))
dx1

x1
· · · dxn

xn
.

Such an embedding is defined for a complete flag in Ank . Equivalently, one may
replace the complete flag with a regular sequence of linear forms (f1, . . . , fn)
in R[x1, . . . , xn] relative to R (i.e., Mi := (f1, . . . , fi)/(f1, . . . , fi−1) ' R for
i = 1, . . . , n). By Parshin point at 0, we mean a complete flag given by a
regular sequence of linear forms. When R = k a field, this defines a tower of
local fields. This coincides with the notion of higher dimensional local fields.

From now on, consider a Parshin point at 0 given as a regular sequence of
coordinate functions: A = (x1, . . . , xn).

When R = k a field, for this Parshin point, we have a unique embedding

ι : k(x1, . . . , xn) ↪→ k((x1))((x2)) · · · ((xn))
(
⊂ k[[x±1 , . . . , x

±
n ]]
)

by iterating completions at each stage:

k(x1, . . . , xi)
ιi
↪→ k(x1, . . . , xi−1)((xi)).
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Then ιi yields the constant map CTxi=0 with respect to xi:

CTxi f(x1, . . . , xi) := CTxi ιi (f (x1, . . . , xi))

= Resxi=0 ι(f)
dxi
xi

= a0(x1, . . . , xi−1),

where ιif(x1, . . . , xi) =
∑∞
k=−N ak(x1, . . . , xi−1)xki .

The iterated constant term with respect to A is defined as the iteration of
CTxi :

iCTA(f(x1, x2, . . . , xn))

:= CTx1 ◦CTx1 ◦ · · · ◦ CTxn f(x1, x2, . . . , xn)

= Resx1=0 ◦ · · · ◦ Resxn=0 f(x1, . . . , xn)
dx1

x1
∧ · · · ∧ dxn

xn
.

(28)

The iterated constant term is strongly dependent on the order in the flag.
For example, we may consider the two embeddings of k(x, y) into k[[x±, y±]]:

ιx,y : k(x, y)→ k((x))((y)),

ιy,x : k(x, y)→ k((y))((x)).

Then iCTx,y

(
1

x−y

)
= 1 but iCTy,x

(
1

x−y

)
= −1.

Now consider

r(x1, . . . , xn) =
f(x1, . . . , xn)

g(x1, . . . , xn)

a rational function in coefficient of a commutative ring R.

Definition B.3. For a Parshin point A at 0, a rational function is called A-
admissible, if it has a well-defined iterated residue (or equivalently iterated
constant term) with respect to A.

The A-admissibility can be checked by iterating the condition of Lemma
B.2. One can write g(x1, . . . , xn) in a unique way:

g(x1, . . . , xn)

= a0 + a1(x1)x1 + a2(x1, x2)x2 + a3(x1, x2, x3)x3 + · · ·+ an(x1, . . . , xn)xn

(29)

for ai(x1, . . . , xi) ∈ R[x1, . . . , xi].

Theorem B.4. Let r(x1, . . . , xn) = f(x1,...,xn)
g(x1,...,xn) ∈ R(x1, . . . , xn) and g(x1, . . .,

xn) be as above. Then r(x1, . . . , xn) is A-admissible if and only if for the
smallest i such that ai(x1, . . . , xi) is not zero-divisor,

a0, a1(x1)x1, . . . , ai−1(x1, . . . , xi−1)xi−1

are nilpotent and 1
ai(x1,...,xi)

is A-admissible.
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