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Abstract. By applying Theorem 2.6.4 (Fang and Zhang, 1990, p.66) the dispersion
matrix of a multivariate power exponential (MPE) distribution is derived. It is shown
that the MPE and the gamma distributions are related and thus the MPE and chi-
square distributions are related. By extending Fang and Xu’s Theorem (1987) from
the normal distribution to the Univariate Power Exponential (UPE) distribution an
explicit expression is derived for calculating the probability of an UPE random
variable over an interval. A representation of the characteristic function (c.f.) for an
UPE distribution is given. Based on the MPE distribution the probability density
functions of the generalized non-central chi-square, the generalized non-central t, and
the generalized non-central F distributions are derived.
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1. INTRODUCTION

The power exponential distribution can be used to model both light and heavy tailed,
symmetric and unimodal continuous data sets. Gomez et al.(1998) generalized the
Univariate Power Exponential (UPE) distribution, which was established by Subbotin
(1923), to the Multivariate Power Exponential (MPE) distribution. Gomez €t al have a
FORTRAN program which can be used to simulate the MPE distributions, but this
program is not available in a public domain. Both Johnson (1979) and Gomez et al. (1998)
mentioned a relationship between the UPE distribution and a Gamma distribution. Gomez
et al. (1998) studied the properties of MPE intensively, including the stochastic
representation, the moments, the characteristic function for n > 1 and the marginal and
conditional distributions and asymmetry and kurtosis coefficients. The dispersion matrix
of a multivariate power exponential (MPE) distribution is derived. Using Theorem 2.6.4
(Fang and Zhang, 1990, p.66) a dispersion matrix of a multivariate power exponential
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(MPE) distribution is derived and it is shown that the MPE and the gamma distributions
are related and thus the MPE and chi-square distributions are related. We extend Fang and
Xu’s Theorem (1987) to the Univariate Power Exponential (UPE) distribution.. An
explicit expression is derived for calculating the probability of an UPE random variable
over an interval. A representation of the characteristic function (c.f) for an UPE
distribution is given. Based on the MPE distribution the probability density functions of
the generalized non-central chi-square, the generalized non-central t, and the generalized
non-central F distributions are derived.

2. POWER EXPONENTIAL DISTRIBUTIONS

Lindsey (1999) defined the UPE distribution as follows:

fOsp0,0)= or(ui]zbﬁ} ex{_%

If'Y is distributed as a UPE with parameters p, ¢, and 8 we write Y ~ UPE (u, 0, §) and we
write Y~UPE () if p = 0, ¢ = 1. Lindsey (1999) defined the MPE distribution as follows:
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If y is distributed as an MPE distribution with parameters p, Y, and 8 we write y ~
UPE(y, L, B) and we write y~ MPE( 8) if p = 0, = I . The parameter § in (1) and (2) is
called the shape parameter.

3. THE MOMENTS OF POWER EXPONENTIAL DISTRIBUTIONS

From now on throughout this paper we adopt some notations from Seber’s (1984).
We use the upper case letter E to denote the expectation operation for a univariate random
variable, the script upper case letter E to denote the expectation operation for a random
variable vector or matrix; the upper case letter ¥ to denote the variance operation for the
univariate random variable, the script upper case letter D to denote the variance-
covariance operation for a random variable vector, the three lower case letters cov to
denote the covariance operation between two random univariate variables, the upper case
script letter C to denote the covariance operation between two random variable vectors or
between one univariate random variable and a random vector.
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Theorem 3.1. Suppose Y is distributed as the MPE as defined in (2). Then there exists a
nonsingular matrix L such that ¥ = LY. Let x= L'(y - ). Then the p.d.f. of x is given

by
j ex;{—%[X,X j 3)

The expectation vector and variance-covariance matrix of x are given, respectively, by

25r[n+2j
E(X)=0, D(X)=—iﬁ-—l

n* ( )

Proof. The Stochastic Representation of x is x =Ru‘™ ~ Sn(¢). Let g(r) be the density
function of R. Then

n

.

)

Substituting the function f of (2) into the above formula we have

g = rfr?). ©)

N

nl“( ]
g(r)= 2z 2 pm exp(—%rwj

n n 1+

(5) 21“(1 + ]2( 2”)
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The expectation of R* is given by
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1
Lett=—r%.
2

Therefore we have

E(R?) = - [2%1 t;_;; ][ljzﬁ ﬁ%_l exp(— £)dt
F(l +—”—)2(27) ) 2
2p
= _"2_[_;;_]_ f t';—;’z_l exp(— t)dt
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2p
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Theorem 3.2 (Lindsey, 1999): Suppose y is distributed as the MPE as defined in (2). The
expectation and variance-~covariance matrix of y are given, respectively, by

2% ‘_(n + 2]
—2'8 3. (6)
46
Proof. By Theorem 2.6.4 (Fang and Zhang, 1990, p.66) we have E(y) = p and
2% I“[ n+ 2]
15:(52)z )

nl“(ij ,
2p

since we found that in the last theorem:

E(y)=p, D(y) =

D(y)=
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2y
5

This completes the proof of the theorem 3.2.

E(R*) =

Gomez et al.(1998) presented the characteristics function of the MPE distribution for n > 1.
In the next theorem we present the characteristics function of the UPE distribution as a
moment series.

Theorem 3.3. If Y ~ UPE (0,1, 8) then the characteristics function (c.f.) of Y is as follows

-0 <t <w0

(2r+1) .
© r r 2 !
p(6)= (-1)2” s

r=0 T(i)@r)!

Proof. By (24.84) (Johnson et al., 1995, p.196) the 7 th central moment of UPE (y, o, 8)
is given by

[0, if r is odd,

l_(r + 1)

= Z 12

:l'lr A o—’2ﬂ ﬂ i
1

\ 2

Substituting ¢ = 1 into the above formula we can get the 7 th moment of Y and by the

using the expression (1.39) (Fang and Xu, 1987, p.38) we can get the c.f. of Y.

(7

if r is even

We let z= gy + p and use the formula ¢_(¢) = ei"'¢y (ot) to get the c.f. of the UPE (u, 0,
B) distribution as follows:

) , r(2r+1](o_t)2,
gy ="y (-1 27 2

r(fﬁj(zr)! ’

If we let =1 in the above formula we can prove that

—w <t <00,
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) r(”“)(a)” L
1y 2 =7

e Z - e ,
r=0 rG)(zr)!

which is the c.f. of the normal distribution N(,d?).

4. THE RELATIONSHIP BETWEEN POWER EXPONENTIAL DISTRIBUTIONS
AND OTHER DISTRIBUTIONS

Putting n = 1 in Theorem 3.2 we obtain the expectation and variance of UPE
distribution. That is if Y is defined as in (1) E (Y) = p and

27"r(iJ
_ \28)

"(55)
2B
Furthermore putting n = 1, 8 = 1 in Theorem 3.2 we have E(Y) = p and D(Y) = ¢, the
UPE distribution now becomes a univariate normal distribution. If we let 8=1/2,n=1 we
have E(Y) = p and D(Y) =80°, and the UPE distribution now becomes the Laplace
distribution. If we let 3=1/2, n=1, u =0, 0 =1 we have the double exponential
distribution. If n >1 and 8 = 1/2, then the MPE distribution becomes a multivariate
Laplace distribution. If 8 = cothen the MPE distribution becomes a multivariate uniform
distribution. If n > 1 and 8 = 1 then the MPE distribution becomes a multivariate normal
distribution. If 0 <8< 1 we have heavier tails than the normal distributions. If 3> 1 we
have lighter tails than normal distributions.

If the random variable U is distributed as a Gamma, the p.d.f. of U is written as

— lr
S = o)

1) or u ~ Gamma (A, r).

D(Y)=

u'e™, 1 >0, where r >0, \> 0. Simply we write this as u ~ Gamma (4, A,

Theorem 4.1. Suppose Y is distributed as the UPE () distribution as defined in (1), and
U is distributed as a Gamma. Then we have the following relationship

1 I L
(Elel ~U Gamma(l, 2,3)‘ (8)

Proof. First suppose

U~ Gamma[l,i}
2p

1 28
L = |[—=
et u (2)|y|
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then du = py**"dy and

1

f»= (11 (ﬂy”“{%ywj“’ exp[—%ywj

I
=__ﬂ__.l._exP(_%y2ﬂ]. ©)
o

Conversely, if y > 0 and Y ~ UPE(B) then

Tl

dy = 5%(2)# (u)ﬁ'l du and

1 b

Py (2)2ﬂ 1,

S = 2’31 1 [u 2 ]exp(— u)
r[1 + z—ﬁ—](z)ﬁ

1
1 —-
= " [u 28 ]exp(— u).
Il —
2p

Similarly, if y <0 we can prove the above conclusion.

In Theorem 4.2 we extended Fang and Xu’s theorem (1987, p.239) from the normal to the

UPE distribution and found an explicit expression for using a Gamma distribution to
calculate the probability of the UPE distribution over an interval.

Theorem 4.2. Suppose Y ~ UPE((), U ~ F(l,?lﬂ—J then we have

P{YSy}zé[P{Us%yz”}+l], y>0 and

P{Y <y} =%—%[P{U s%(—y)”’}} y <0.
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Proof. Ify > Othen P{-y < Y < y}= P{U S—;-ym}.
ButP{Y <y} =P{-y <Y < y}+P{Y < -y}
=Ply Y < yi+ %[I-P{-y <Y <y}l

1 1
—+—P{y <Y<
) {-y y}

= —[P{U <= (y)”’}+1}

Similarly, wheny <0,
P{Y £y} =1-P{Y £ -y}

-1. 1 28
1 2[P{U<2( y) }+1]

- l——[P{U< EYia) }

2 2
In the following Theorem 4.3 we derive a relationship between the MPE distribution and a
Gamma distribution.

Theorem 4.3. Suppose x > 0 and y is distributed as the MPE distribution as defined in (2)
and u is distributed as a Gamma. We then have the following relationship

I T 0= Gamm{%x" ! EEJ a0

where Gamma(.) is the same as defined as in the Theorem 4.1.
1 1

1
Proof. Let x =% 2(y — u), where > isnonsingularand X ?% ? = 27", Then we have

(y-u) =x'52,

(r-1) =" (- p)= [x'zé JZ“ (Z%x] — x'x = sz

1 +
The Jacobian of this transformation is |J I+ =[x2

Therefore

n
A

,J.-[ t I(y—ﬂ)'i“'(y—y)s;:f(y)dy




S. Zheng, S. Bae, A A. Bartolucci and K.P. Singh

1l
&
ﬁ
I~
NN
N—
T
(¢}
>4
o
|
N | —
N
I'M:
=
" NS
——
=
=
kS
=

-1 n
= X —-1
—nzl“(g—) L - — exp(— yﬂ)yz dy
nzr(1+iJ2 Z
2p
-
B, n_
S J;GXP(-—y” jyz dy
I“[l+—n—
2p

1
(by applying a change of variable, w = —2- ¥

B0 explcw
r(M) "

= Gamma —l—xﬂ ,I,L
2" op

105

In the following Theorem 4.4 we derive a relationship between the UPE distribution and a

¢ distribution.

Theorem 4.4. Suppose Y is distributed as the UPE(0,1, B) as defined in (1) and T is

distributed as a ¥’ If 1/8 is a positive integer, then T =|Y[*
degree of freedom 1/8.

is distributed as a y° with

Proof. We discussed the definition of UPE in the section 2. Substituting p = 0 and o =1

into (1) we have the density function of UPE(0, 1, §) as follows:

f(»:0,1,8) = : 1 eXp(— %lylw )

1+—
r 1+i 2 2F
2pB
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Applying a change of variable t = |y|*® to the above density function we have the density
function of T as follows:

1 5! 1
ft)y=———t* exp(—-—t), t>0,
I L 928 2
2B
which is the density function of a 3’ with the degree of freedom 1/8.

The above relationship can be used to calculate the probability or the moments of some
UPE distributions through a 3 distribution. For example, if Y ~ UPE (0, 1, 0, 1),then T =

2°T(15)

—‘I:W s since Y

|Y|2ﬂ ~ ZIZO > and E(T) = 10, V(T) = 203 and E(Y) = E(TS) =
L
=T? =T° by Theorem4.4.

| 5. MARGINAL AND CONDITIONAL DISTRIBUTION OF
POWER EXPONENTIAL DISTRIBUTIONS

Theorem 5.1. Suppose (X, Y) is distributed as 2-dimensional MPE distribution. That is
X
(YJ ~ MPE, (11, Z, B),

where
O 2

u=| |, = i 0122 , rk(Z)=2.
0 0, O,

The joint p.d.f. of (X, Y) is given as follows:

118
fesn)= - 2 ex{—%[(x,y)z“(x,y)”
mjoloi(l- pz)l“(l + %)2 p

2 1 1
- i X _5|:1 yo, [0' o,0 +0'
+— -
7[,/0’120'22(1—/)2)1‘(1+%]2 o : e

where p is the correlation coefficient between X and Y. We have the following three
conclusions.
(1) The marginal distribution of X is given by
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1 12
fx)= — exp{—i(?] ] (12)
0'11{1+ij2 25 !

(2) The marginal distribution of Y is given by

1 1Y
fo)= , ex{——[y—zJ ] a3
1 T4 2 o,
0'21‘(1+——)2 25
28

(3) The conditional distribution of X given Y =b is given by

1) }5;

ol 1 > o) ] LY

f(x]b)= / e —5{(& )("' "J (x,b)} +5[—;] (14
ol (1-p? )l'(l + —ﬁ) %2 £

Proof. By Theorem 2.6.3 (Fang& Zhang, 1990, p.66) we can see that (12) and (13) follow

from: Yy = 0%, Do=0 pP = u® =0, n=1. Next we prove (14). The conditional

distribution of X given Y =b is f(x | b) = f(x, b) / fy(b). Then (14) follows from (11) and

(13).

Theorem 5.2. Suppose (X, Y, T) is distributed as 3-dimensional MPE distribution. That is
X

Y |~MPE,(u,%, ),

T

where
0 0, O On

u=|01 ==lo, o o, rk(Z)=3
H, Oy Oy O

The joint p.d.f. of (X,Y,T) is given as follows
WO IS
; — ex{— 5 [zZ"z']ﬁ ), (15)
e 3 +—
72 1+—R %
{3

where z=(x, y, t - t;). We then have the conditional distribution of T given (X, Y) =(a, b)
as follows

SOy, =
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ftlab)= r(’ i [ J zz“’]ﬂ 2(,1;)("2 "]("j 9

L on )

where z = (a, b, t - u) and p is the correlation coefficient between X and Y.

Proof. The conditional distribution of T given X =a, Y=bisf(t|a,b) = f(a,b,t) / fxy
(a,b). It is an immediate result that (16) follows from (11) and (12) or (13).

6. SOME NON-CENTRAL DISTRIBUTIONS

In the classic multivariate analysis we derive the non-central chi-square, non-central t
and non-central F distributions under the normal distribution assumptions. We can
generalize these three non-central distributions under ECD assumptions. We utilize
Theorem 2.9.2, Theorem 2.9.4 and Theorem 2.9.5 (Fang and Zhang, 1990, p.82-87) to
derive the following three theorems.

Suppose x ~ MPE (u, I, B) we define u= x x as the generalized Xz distribution
and write u~ G )f,, (62, f), where &= p’ p is the non-centrality parameter and function f is
the same as defined in definition (2). There exists an orthogonal matrix I" such that

= q R ) = (5 ,0,0,...,O) . We denote I'u by ».. After applying the orthogonal
transformation MPE (u, I,,, 8) becomes MPE (v, I, ,8).

Theorem 6.1. The density of the generalized chi-square U =X x = G X%,(8°, f) is

n), -
5
1 f y+62 2 52;10050]1i sin"* Gd@. 17
r(n 1)1_( n jzzﬁ
2p

Proof. The above theorem can be proved by using Theorem 2.9.2 (Fang and Zhang, 1990,
p.82) and the definition of (1) of this paper.

Suppose x = (x1,X%) ~MPE(, I+1, 8) , where x® isnx land u=(8,0,...,0)', the
generalized non-central t distribution is defined as
Jnx,

Y@ y@
and we write T ~ G t, (8, f) where f((x — p) (x ~ p)) is the density of x.

T= (18)

Theorem 6.2. The generalized non-central t distribution is defined as above whose density
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function can be written as
n+l

" (n+ 1)r(11-—2ﬂ)(n +2) 2
N\, n+1),5
\/Zr(zjr(n ¥ Jz
té

—w<t<w, where 0§ =——.
Vn+t?
Proof. We can prove the above theorem by using Theorem 2.9.4 (Fang and Zhang, 1990,

p-85) and the definition of (2) of this paper.

fexp(—%(yz -28,y +52)'ﬂ)y”dy,

Ifx= (x(”,xm)'~ MPE (u, Lpen, B), where ¥ ismx 1, x?isnx 1 and p= (v; 0') ', Vv is
mx 1, we define the generalized non-central F distribution as follows:

nX(l)’X(l)

m X(Z)' x® '
and we write F~ G Fy,, (8%, f), f((x—p) (x— p)) is the density of x, 8> =pp=v v.

F =

Theorem 6.3. The generalized non-central F distribution is defined as above whose
density function can be written as

ol f o) (3]
n 2 n n N
i1+ 210 r(————m—ljr(f)z%
28 2 2
1 2 2 m+n-1 = m-=2
J:fexp[—a—(y ~26,ycos@+46 )ﬂjy sin”™" 6d6dy, F >0,

where 6I=[‘/ mFF)S.
n+m

Proof. We can prove the above theorem by using Theorem 2.9.5 (Fang and Zhang, 1990,
p.86) and the definition of (2) of this paper.

7. CONCLUSION

Several extensions and developments were made in this paper. We derived the
dispersion matrix of an MPE distribution.. Our method is much simpler than the method
of Gomez et al. (1998). Second, we showed a relationship between any MPE distribution
and a Gamma distribution. Third, we obtained a link between the UPE distribution and a
x* distribution. Fourth, we extend Fan and Xu’s (1987) from the normal to the UPE
distribution and found an explicit expression using a Gamma distribution to calculate the
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probability of the UPE distribution over an interval. Fifth, we found a representation of the
characteristic function for any UPE distribution. Finally, we derived the p.d.f. of the
generalized non-central chi-square, the generalized non-central t, and the generalized non-
central F distribution based on the MPE distributions.
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