• Title/Summary/Keyword: generalized complex space forms

Search Result 6, Processing Time 0.024 seconds

SHAPE OPERATOR AH FOR SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • KIM, DONG-SOO;KIM, YOUNG-HO;LEE, CHUL-WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.189-201
    • /
    • 2005
  • In this article, we establish relations between the sectional curvature function K and the shape operator, and also relationship between the k-Ricci curvature and the shape operator for slant submanifolds in generalized complex space forms with arbitrary codimension.

GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • Mohd Aquib;Mohd Aslam;Michel Nguiffo Boyom;Mohammad Hasan Shahid
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.179-193
    • /
    • 2023
  • In this article, we derived Chen's inequality for warped product bi-slant submanifolds in generalized complex space forms using semisymmetric metric connections and discuss the equality case of the inequality. Further, we discuss non-existence of such minimal immersion. We also provide various applications of the obtained inequalities.

ON THE LIE DERIVATIVE OF REAL HYPERSURFACES IN ℂP2 AND ℂH2 WITH RESPECT TO THE GENERALIZED TANAKA-WEBSTER CONNECTION

  • PANAGIOTIDOU, KONSTANTINA;PEREZ, JUAN DE DIOS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1621-1630
    • /
    • 2015
  • In this paper the notion of Lie derivative of a tensor field T of type (1,1) of real hypersurfaces in complex space forms with respect to the generalized Tanaka-Webster connection is introduced and is called generalized Tanaka-Webster Lie derivative. Furthermore, three dimensional real hypersurfaces in non-flat complex space forms whose generalized Tanaka-Webster Lie derivative of 1) shape operator, 2) structure Jacobi operator coincides with the covariant derivative of them with respect to any vector field X orthogonal to ${\xi}$ are studied.

Simons' Type Formula for Kaehlerian Slant Submanifolds in Complex Space Forms

  • Siddiqui, Aliya Naaz;Shahid, Mohammad Hasan;Jamali, Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.149-165
    • /
    • 2018
  • A. Bejancu [2] was the first who instigated the new concept in differential geometry, i.e., CR-submanifolds. On the other hand, CR-submanifolds were generalized by B. Y. Chen [7] as slant submanifolds. Further, he gave the notion of a Kaehlerian slant submanifold as a proper slant submanifold. This article has two objectives. For the first objective, we derive Simons' type formula for a minimal Kaehlerian slant submanifold in a complex space form. Then, by applying this formula, we give a complete classification of a minimal Kaehlerian slant submanifold in a complex space form and also obtain its some immediate consequences. The second objective is to prove some results about semi-parallel submanifolds.

A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.781-794
    • /
    • 2008
  • Let $\mathbb{H}_g$ and $\mathbb{D}_g$ be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let $\mathbb{C}^{(h,g)}$ be the Euclidean space of all $h{\times}g$ complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ onto the Siegel-Jacobi space $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ which gives a partial bounded realization of $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ by $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. We prove that the natural actions of the Jacobi group on $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. and $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$. are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. invariant under the natural action of the Jacobi group $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ explicitly.