DOI QR코드

DOI QR Code

A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

  • Published : 2008.05.31

Abstract

Let $\mathbb{H}_g$ and $\mathbb{D}_g$ be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let $\mathbb{C}^{(h,g)}$ be the Euclidean space of all $h{\times}g$ complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ onto the Siegel-Jacobi space $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ which gives a partial bounded realization of $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ by $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. We prove that the natural actions of the Jacobi group on $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. and $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$. are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. invariant under the natural action of the Jacobi group $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ explicitly.

Keywords

References

  1. R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163. Birkhauser Verlag, Basel, 1998
  2. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55, Birkhauser, Boston, Basel and Stuttgart, 1985
  3. A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, Princeton, New Jersey, 1986
  4. A. Koranyi and J. A. Wolf, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939 https://doi.org/10.2307/2373253
  5. H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68 https://doi.org/10.1007/BF01343149
  6. I. Piateski-Sharpiro, Automorphic Functions and the Geometry of Classical Domains, Translated from the Russian. Mathematics and Its Applications, Vol. 8 Gordon and Breach Science Publishers, New York-London-Paris 1969
  7. I. Satake, Algebraic structures of symmetric domains, Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N. J., 1980
  8. C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86 https://doi.org/10.2307/2371774
  9. J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146 https://doi.org/10.1007/BF02941338
  10. J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049 https://doi.org/10.2307/2154921
  11. J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339 https://doi.org/10.4153/CJM-1995-068-2
  12. J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Kyungpook Math. J. 40 (2000), no. 2, 209-237
  13. J.-H. Yang, The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272
  14. J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712
  15. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83-102 https://doi.org/10.1016/j.jnt.2006.12.014
  16. J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, arXiv:math.NT/0507217 v1 or revised version (2006)
  17. C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224 https://doi.org/10.1007/BF02942329

Cited by

  1. SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.787
  2. THETA SUMS OF HIGHER INDEX vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b160009
  3. Coherent states and geometry on the Siegel–Jacobi disk vol.11, pp.04, 2014, https://doi.org/10.1142/S0219887814500352
  4. A CONVENIENT COORDINATIZATION OF SIEGEL–JACOBI DOMAINS vol.24, pp.10, 2012, https://doi.org/10.1142/S0129055X12500249
  5. ON THE GEOMETRY OF SIEGEL–JACOBI DOMAINS vol.08, pp.08, 2011, https://doi.org/10.1142/S0219887811005920
  6. Invariant metrics and Laplacians on Siegel-Jacobi disk vol.31, pp.1, 2010, https://doi.org/10.1007/s11401-008-0348-7
  7. CONSEQUENCES OF THE FUNDAMENTAL CONJECTURE FOR THE MOTION ON THE SIEGEL–JACOBI DISK vol.10, pp.01, 2013, https://doi.org/10.1142/S0219887812500764
  8. A Note on Maass-Jacobi Forms II vol.53, pp.1, 2013, https://doi.org/10.5666/KMJ.2013.53.1.49