References
- R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics, 163. Birkhauser Verlag, Basel, 1998
- M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55, Birkhauser, Boston, Basel and Stuttgart, 1985
- A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, Princeton, New Jersey, 1986
- A. Koranyi and J. A. Wolf, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939 https://doi.org/10.2307/2373253
- H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44-68 https://doi.org/10.1007/BF01343149
- I. Piateski-Sharpiro, Automorphic Functions and the Geometry of Classical Domains, Translated from the Russian. Mathematics and Its Applications, Vol. 8 Gordon and Breach Science Publishers, New York-London-Paris 1969
- I. Satake, Algebraic structures of symmetric domains, Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N. J., 1980
- C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86 https://doi.org/10.2307/2371774
- J.-H. Yang, The Siegel-Jacobi operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146 https://doi.org/10.1007/BF02941338
- J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049 https://doi.org/10.2307/2154921
- J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339 https://doi.org/10.4153/CJM-1995-068-2
- J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Kyungpook Math. J. 40 (2000), no. 2, 209-237
- J.-H. Yang, The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), no. 2, 199-272
- J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83-102 https://doi.org/10.1016/j.jnt.2006.12.014
- J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, arXiv:math.NT/0507217 v1 or revised version (2006)
- C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224 https://doi.org/10.1007/BF02942329
Cited by
- SECTIONAL SURVATURES OF THE SIEGEL-JACOBI SPACE vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.787
- THETA SUMS OF HIGHER INDEX vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b160009
- Coherent states and geometry on the Siegel–Jacobi disk vol.11, pp.04, 2014, https://doi.org/10.1142/S0219887814500352
- A CONVENIENT COORDINATIZATION OF SIEGEL–JACOBI DOMAINS vol.24, pp.10, 2012, https://doi.org/10.1142/S0129055X12500249
- ON THE GEOMETRY OF SIEGEL–JACOBI DOMAINS vol.08, pp.08, 2011, https://doi.org/10.1142/S0219887811005920
- Invariant metrics and Laplacians on Siegel-Jacobi disk vol.31, pp.1, 2010, https://doi.org/10.1007/s11401-008-0348-7
- CONSEQUENCES OF THE FUNDAMENTAL CONJECTURE FOR THE MOTION ON THE SIEGEL–JACOBI DISK vol.10, pp.01, 2013, https://doi.org/10.1142/S0219887812500764
- A Note on Maass-Jacobi Forms II vol.53, pp.1, 2013, https://doi.org/10.5666/KMJ.2013.53.1.49