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B.-Y. CHEN INEQUALITIES FOR SUBMANIFOLDS
IN GENERALIZED COMPLEX SPACE FORMS

JEONG-SIK KIM, YEONG-MO0OO SONG AND MUKUT MANI TRIPATHI

ABSTRACT. Some B.-Y. Chen inequalities for different kind of sub-
manifolds of generalized complex space forms are established.

1. Introduction

According to Nash’s immersion theorem every n-dimensional Rie-
mannian manifold admits an isometric immersion into Euclidean space
Er(+1)@n+11)/2 - Thus, one becomes able to consider any Riemannian
manifold as a submanifold of Euclidean space; and this provides a nat-
ural motivation for the study of submanifolds of Riemannian manifolds.
To find simple relationships between the main intrinsic invariants and
the main extrinsic invariants of a submanifold is one of the basic interests
of study in the submanifold theory. Gauss-Bonnet Theorem, Isoperi-
metric inequality and Chern-Lashof Theorem provide relations between
extrinsic and extrinsic invariants for a submanifold in a Euclidean space.

In [2], B.-Y. Chen established a sharp inequality for a submanifold
in a real space form involving intrinsic invariants, namely the sectional
curvatures and the scalar curvature of the submanifold; and the main
extrinsic invariant, namely the squared mean curvature.

On the other hand, A. Gray introduced the notion of constant type for
a nearly Kahler manifold ([6]), which led to definitions of RK-manifolds

M (¢, @) of constant holomorphic sectional curvature ¢ and constant type
a ([10]) and generalized complex space forms M (f1, f2) ([7]). We have
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the inclusion relation M (c) C M (¢,a) C M (f1, f2), where M (c) is the
complex space form of constant holomorphic sectional curvature c.

Thus it is worthwhile to study relationships between intrinsic and ex-
trinsic invariants of submanifolds in a generalized space form. In this pa-
per, we establish several such relationships for slant, totally real and in-
variant submanifolds in generalized complex space forms, complex space
forms and RK-manifolds. The paper is organized as follows. Section 2
is preliminary in nature. It contains necessary details about generalized
complex space form and its submanifolds. In section 3, we obtain a basic
inequality for a submanifold in a generalized complex space form involv-
ing intrinsic invariants, namely the scalar curvature and the sectional
curvatures of the submanifold on left hand side and the main extrin-
sic invariant, namely the squared mean curvature on the right hand
side. Then, we apply this result to get a B.-Y. Chen inequality between
Chen’s §-invariant and squared mean curvature for #-slant submanifolds
in a generalized complex space form. Particular cases are put in a ta-
ble in concise form. Next, we establish another general inequality for
submanifolds of generalized complex space forms and then using it we
obtain a B.-Y. Chen’s inequality between Chen’s § (ny, - - - , ng)-invariant
and squared mean curvature for slant submanifolds. In last, we again
list particular cases in a table.

2. Preliminaries

Let M be an almost Hermitian manifold with an almost Hermit-
ian structure (J, (,)). An almost Hermitian manifold becomes a nearly

Kihler manifold ([6]) if (@XJ) X =0, and becomes a Kaihler manifold

if VJ =0 for all X € TM, where V is the Levi-Civita connection of the
Riemannian metric (,). An almost Hermitian manifold with J-invariant
Riemannian curvature tensor R, that is,

R(JX,JY,JZ,JW)=R(X,Y,Z,W), X, Y,Z,WecTM,
is called an RK-manifold ([10]). All nearly Kéhler manifolds belong to
the class of RK-manifolds.

The notion of constant type was first introduced by A. Gray for a
nearly Kahler manifold ([6]). An almost Hermitian manifold M is said
to have (pointwise) constant type if for each p € M and forall X,Y,Z €
T,M such that

(X,Y)=(X,2) =(X,JY)=(X,JZ) =0, (Y,Y) =1=(Z, 2)
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we have
R(X,Y,X,Y)-R(X,Y,JX,JY)=R(X,Z,X,Z) - R(X,Z,JX,JZ).

An RK-manifold M has (pointwise) constant type if and only if there is
a differentiable function o on M satisfying ([10])
R(X,Y,X,Y) - R(X,Y,JX,JY)
= o{(X, X) (Y,Y) - (X,Y)* — (X, JY)*}

for all X,Y € TM. Furthermore, M has global constant type if o is
constant. The function « is called the constant type of M. An RK-
manifold of constant holomorphic sectional curvature ¢ and constant
type a is denoted by M(c, ). For M(c,a) it is known that ([10])

4R(X,Y)Z = (c+30){(Y,Z2) X —(X,2)Y}
+c—a){(X,JZ)JY —(Y,JZ) JX +2(X,JY) JZ}

for all X,Y,Z € TM. If ¢ = o then M (c,a) is a space of constant
curvature. A complex space form M (¢) (a Kéhler manifold of constant
holomorphic sectional curvature c) belongs to the class of almost Her-
mitian manifolds M (¢, ) (with the constant type zero).

An almost Hermitian manifold M is called a generalized complex space
form M (f1, f2) ([7]) if its Riemannian curvature tensor R satisfies

R(X,Y)Z = fH{(Y,2)X - (X,Z)Y}
(1) +f{(X,JZ)JY — (Y, JZ)JX +2(X,JY) JZ}

for all X,Y,Z € TM, where f1 and f5 are smooth functions on M.

The Riemannian invariants are the intrinsic characteristics of a Rie-
mannian manifold. Here, we recall a number of Riemannian invari-
ants ([4]) in a Riemannian manifold. Let M be a Riemannian mani-
fold and L be a r-plane section of T,M. Choose an orthonormal basis
{e1,--- ,e,} for L. Let K;; denote the sectional curvature of the plane
section spanned by e; and e; at p € M. The scalar curvature 7 of the
r-plane section L is given by

(2) T(L)= Y Ky

1<i<j<r
Given an orthonormal basis {e1,- - ,e,} for T,M, 71.., will denote the
scalar curvature of the r-plane section spanned by e1,--- ,e,. If Lis a

2-plane section then 7(L) reduces to the sectional curvature K of the
plane section L. We denote by K(7) the sectional curvature of M for a
plane section 7 in T,M, p € M. The scalar curvature 7(p) of M at p
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is the scalar curvature of the tangent space of M at p. Thus, the scalar
curvature 7 at p is given by

3 T(p) =) Kij,
1<J
where {e1,--- ,e,} is an orthonormal basis for T, M and Kj; is the sec-

tional curvature of the plane section spanned by e; and e; at p € M.
Chen’s §-invariant is defined by the following identity

(4)  Oop(p) =7(p) — inf{K(7) | 7 is a plane section C T,M},

which is certainly an intrinsic character of M.
For an integer k > 0, we denote by S(n,k) the finite set which

consists of k-tuples (nq,---,ng) of integers > 2 satisfying n; < n and
ny + -+ + ng < n. Denote by S(n) the set of all (unordered) k-tuples
with k > 0 for a fixed positive integer n. For each k-tuple (n1,--- ,ng) €
S (n), we B.-Y. Chen introduced a Riemannian invariant é (ny,-- -, ng)
defined by

(5) §(n1,- - k) (p) = 7(p) —inf {7 (L1) + -+ 7 (L)},

where L, -+, Ly run over all k mutually orthogonal subspaces of T,,M

such that dimL; = n;, j = 1,--- ,k. For each (ny,---,n;) € S(n) we
put

k
(6) a(ni, ,nk):—n(n—l)—%Zn](nJ—l),
j=1
k
nlin+k—1- an
(7) b(n, - i) =

For more details we refer to [4] and corresponding references therein.
Let M be an n-dimensional submanifold in a manifold M equipped
with a Riemannian metric (,). The Gauss and Weingarten formu-
lae are given respectively by VxY = VxY + o (X,Y) and VxN =
~ANX + V%N forall X,Y € TM and N € T+ M, where V, V and V+
are Riemannian, induced Riemannian and induced normal connections
in M, M and the normal bundle T1M of M respectively, and ¢ is the
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second fundamental form related to the shape operator Ay in the direc-
tion of N by (¢ (X,Y),N) = (AnX,Y). The mean curvature vector H
is expressed by nH = trace (o). The submanifold M is totally geodesic
in M if o =0.

In a submanifold M of an almost Hermitian manifold, for a vector 0 #
X, € T,M, the angle 0 (X,) between JX,, and the tangent space TpM is
called the Wirtinger angle of X,. If the Wirtinger angle is independent
of p € M and X, € T,M, then M is called a slant submanifold ([1]).
We put JX = PX + FX for X € TM, where PX (resp. FX) is the
projection of JX on TM (resp. T+M). Slant submanifolds of almost
Hermitian manifolds are characterized by the condition P2 + A\2] = 0
for some real number \ € [0,1]. Invariant and anti-invariant ([11]) (or
totally real) submanifolds are slant submanifolds with § = 0 (F' = 0) and
§ = m/2 (P = 0) respectively. For more details about slant submanifolds
we refer to [1].

3. B.-Y. Chen inequalities

First we state the following algebraic lemma from [2] for later uses.

LEMMA 3.1. Ifa1, -+ ,Qpn,any1 are n+ 1 (n > 2) real numbers such

that )
(Z ai> =(n-1) (Z af + an+1> ,
i=1 i=1

then 2aias > an41, with equality holding if and only if a1 + a2 = a3 =

cee = Qg

Let M be a submanifold in an almost Hermitian manifold M. Let
m C TpM be a plane section at p € M. Then
(8) O (m) = (Pey, e2)”
is a real number in [0, 1], which is independent of the choice of orthonor-

mal basis {e1, ez} of m. Moreover, if M is a generalized complex space
form, then Gauss equation becomes ([8})

R(Xv Yv Zv W) = fl {<Ya Z) <Xa W> - <X7 Z> (Y’ W>}
+£2 {(X,PZ) (PY,W) — (Y,PZ) (PX,W) + 2(X, PY) (PZ,W)}
9) +{c(X,W),0(Y,2))—(0(X,2),0(Y,W))

for all X,Y,Z,W € TM, where R is the curvature tensors of M. Thus,
we are able to state the following Lemma.
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LEMMA 3.2. In an n-dimensional submanifold in a generalized com-
plex space form M (f1, f2), the scalar curvature and the squared mean
curvature satisfy

(10) 2r =n(n—1) fi +3% P>+ |HI - |o|?,
where
n n
1P =" (ei, Pe;s)?  and |o|>="" (o(eire;),0(eire;)) .
i,j=1 =1

For a submanifold M in a real space form R™(c), B.-Y. Chen ([2])
gave the following
n?(n —2)
oy < ——2
M=m-1)
He ([3]) also established the basic inequality for submanifold M in a
complex space form C'P™(4c) (respectively, CH™(4c), the complex hy-
perbolic space) of constant holomorphic sectional curvature 4c as follows:
n?(n —2)

< N2
om < 2(n— 1)

2
-2
(respectively, &y < %

Now, we prove the following basic inequality for later uses.

IEIE + 5 n+ 1~ 2)e

1
IHII* + 5 (n* + 2n — 2)c

IEIP + 5(n+ 1) — 2)e).

THEOREM 3.3. Let M be an n-dimensional submanifold isometri-
cally immersed in a 2m-dimensional generalized complex space form
M (f1, f2). Then, for each point p € M and each plane section m C T,M,
we have

2
n* (n—2)
11) ™—K <—7
Equality in (11) holds at p € M if and only if there exists an orthonormal
basis {e1,:- ,en} of T,M and an orthonormal basis {en+1, "+ ,€2m}
of T;*M such that (a) = = Span{e1, ez} and (b) the shape operators
Ar=A..,r=n+1,---,2m, take the following forms:

1B (n4+1)(n=2) frt o | PIP-3£:0(r).

A0 0 - 0

0 u 0 0
(12) Appp=| 0 0 Atp 0,

0 0 O 0

00 0 - Atpu
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e dr O 0
dr —c, 0 0
(13) A= 0 0 0 0, r=n+2--,2m.
0 0 0 0
0 0 0 0

Proof. Let m C T,M be a plane section. Choose an orthonormal
basis {e1, ez, ,en} for T,M and {ep41,- - ,€am} for the normal space
T;-M at p such that 7 = Span {e1, e} and the normal vector e, 1 is in
the direction of the mean curvature vector H. We rewrite (10) as
(14)

= <Zon+1)2:2ﬂ: B2 S (o) i”: S (o1)24 5,

=1 i#£j r=n+21i,j=1

where

n? (n —2

15)  p=2r- "Dy nno) - 35| PP

and of; = (o (e;, ;) ,er), 4,5 € {1,--- ,n}; r e {n+1,--- ,2m}. Now,
applying Lemma 3.1 to (14), we obtain

2m n
(16) 20 og > Y (o) + X Y (o) 40

i#j r=n+21i,j=1

From (9) it also follows that

(17)
5 2m

K (m) = oo — (o17")* + Y (oo - (012)%) + fi+3£:0 (m).
r=n-+2

Thus, from (16) and (17) we have

K(r) > fi+3£20 (m)+5 +Z > {(07,)2+(o%)) }+ > (ofth?

r=n+1j>2 z;éj>2
2m
(18) + Z Z Z (ofy + 052)%.
r=n+214,5>2 r=n+2

In view of (15) and (18), we get (11).
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If the equality in (11) holds, then the inequalities given by (16) and
(18) become equalities. In this case, we have
O'?J-H—O a"+1—0, a?j+1=0, i £ G > 2
alj =02j— --=0, r=n+2,--,2m; ¢,j=3,---,n;
(19)  off +opt = =off o3y =

Now, we choose e; and eg so that 0”“ = 0. Applying Lemma 3.1 we
also have

(20) o opt =g = = ont

Thus, choosing a suitable orthonormal basis {ei,-: ,eam}, the shape
operators of M become of the forms given by (12) and (13). The converse
is simple to observe. Il

As an application, we prove a B.-Y. Chen inequality for #-slant sub-
manifolds in a generalized complex space form.

THEOREM 3.4. For an n-dimensional (n > 2) 6-slant submanifold M
isometrically immersed in a 2m-dimensional generalized complex space
form M (f1, f2) , at every point p € M and each plane section 7 C T,M,
we have

(21) JMSF—_—Q{;_%_ZI (n+1)f1+3fzcos29}.

2

Equality in (21) holds at p € M if and only if the shape operators of M
in M (f1, f2) at p take the forms given by (12) and (13).

Proof. Let M be an n-dimensional f-slant submanifold M in an
almost Hermitian manifold with n > 3, n = 2I. Let p € M and
{ei,sec6Pes}, i = 1,---,1, be an orthonormal basis of T,M. Thus,
we have ||P||> = ncos?6. Choosing an orthonormal basis {e,sec 6Pe}
for any plane section 7 C T, M, we have © (1) = cos?§. Putting these
values of || P||? and © (r) in (11), we get (21). O

In particular, the above Theorem provides the following Corollary.
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COROLLARY 3.5. We have the following table:

Manifold | Submanifold Inequality
~ i
M(f1, f2) |totally real Y HIE 4+ (n+1) fl}

3
[

Y
S
IN

1

|
3
o l

S
8o
3

M(f1 , f2) |invariant

O
g
IN

LIHIE + (4 2) £+ 32

|
N
|

n
g
INA
‘ 3
[
———— N —— — N N
=S
3
[\

o~ S
3
™

M (c,a) |B-slant

3

>
g
IA

— NH|? + (n+1) (c+ 3a)
+3(c — @) cos? 0}

2
A \HIP 4+ (4 1)(c+3a)}

* ‘

3
|
v

M {c,a) totally real

o,
g
IN

| oo

1

|

M (c,o) |invariant NHI? + (n+4)c+ 3na}

8 n—1
M (c) 6-slant dp < r ; 2 n47—221 HH)? + (n+ 1+ 3cos? 6) c}
M (c) totally real S < n_§_2 :izl NH|? + (n+1) c}
M(c) invariant Sar < n ; 2 n4f21 HH)? + (n+4) c}
R (o < 22 P+ e
n—1

Let M be a submanifold of an almost Hermitian manifold. For an

r-plane section L C T, M and for any orthonormal basis {ey, - ,e,} of
L, we put
(22) V(L) = Y (Peie;)’.

1<i<j<r

LEMMA 3.6. Let M be an n-dimensional submanifold of a 2m-dimen-

sional generalized complex space form M (f1, f2). Let my,--- ,ng be
integers > 2 satisfying n1 <n,n1+---+ng <n. Forp € M, let L; be
an nj-plane section of T,M, j =1,--- , k. Then we have

T_ZT(LJ) < b(nla"' >nk) “H”2+a(n17 ,’I’Lk) fl

j=1
3 k
(23) +5 4 1P =2 ¥ (L) ¢ fo.
j=1
Proof. Choose an orthonormal basis {ey,--- ,e,} for T,M and {en41,

-, eam} for the normal space Tle such that the mean curvature
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vector H is in the direction of the normal vector to e,4;. We put
— ntl .
a; =05 —(U(Ei,@i),en+1>, 7‘_17"' , 1,
bi=a1, ba=ax+ - +an, b3 =an11+ "+ an4ny
bk+1 = an1+...+nk_1+1 + et + an1+n2+...+nk_1+nk,
bk+2 = Qpy+-Fng+ls "0 b’y-l—l = Qn,

and denote by D;, j =1,--- ,k the sets

Dl:{l,-.. ,’I’Ll}, D2:{n1+1,"~ ,n1+n2},_”’
Dk={(7’L1+"'+’rLk_1)+1,‘-' »(n1+-'-+nk_1)+nk}.

Let Li,---, Lg be k mutually orthogonal subspaces of T,M, dim L;
n;, defined by

L1 =span{er, - - ,en }, Lo =span{en; 41, " ,€ni4na ) " >

Ly = span{en, 4 tnp_1+1," " 1 €ny+-tnp_1+ng |-

From (9) it follows that

T(L;) = % {n;(nj —1) fL + 6% (L;)}

2m
(24) t 00 2 [ohie R — (0hip)]
r=n+la;<6;

We rewrite (10) as

(25) n? |H)? = (llo]® +n) 7,
or equivalently,
(26)
n 2 n 5 9 2m n N
(Set) = (S e5) s 3 3 e
i=1 i=1 i#£j r=n+24,j=1
where

(27) n=2r —2b(n,-- ) [H|I* = n(n - 1) fr - 352 | P|?,

k
(28) 'y=n+k—2nj.
—
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The relation (26) implies that

o ANE 41 2m  n
(Zb,.) e N () S 3 (o)
i=1 i=1 itj r=n+24,j=1

a1<B1 <P

with o, 8; € D;, forall j =1,--- , k. Applying Lemma 3.1 to the above
relation, we have

Z Aoy Qpy + 00+ Z Qo QB

a1<p o <P
1 2m n 0
25 +Z(n+1)+z Z(Ufj) ,
1#£7 r=n+21i,j=1

Which implies that

DIDY [% (azmjf]

j=1lr= n+1a]<ﬂ]

77
E 2 Z Z Z Z ( C”J“J) !
r=n+1 (a,3) ¢D2 r=n+2 o;€D;
where we denote by D? = (D1 x D7) U---U (Dy, x Dg). Thus, we have

kK  2m
(29) g < Z Z Z [Ugtjajo-gjﬁj — (95,8, )2] '

j=1r=n+1 o <,@j
From (6), (24), (27) and (29), we obtain (23). O

B.-Y. Chen gave a general inequality for submanifolds in real space
forms as follows ([5]).

THEOREM 3.7. For any n-dimensional submanifold M in a real space
form R(c) and for any k-tuple (n1,--- ,ng) € S (n), regardless of dimen-
sion and codimension, we have

(30)  8(ny,---,nk) <b(ny, - ) ||H|)? +a(ng, - ) e

We extend the above result for submanifolds in a generalized complex
space forms.

THEOREM 3.8. Given an n-dimensional (n > 3) 6-slant submanifold
M, of a 2m-dimensional generalized complex space form M (fi, f2), we
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6(”17"' ,TLk;) < b(nla"' ,’I’Lk-) ”H”2 +a('n’1)"' ,nk) fl

k
(31) + g n—2 Z [ﬁ] facos? 6.
1

Proof. Let M be an n-dimensional #-slant submanifold M in an al-
most Hermitian manifold with n > 3, n = 2I. Then, we have ||P||* =
ncos?@. Let Li,---,L; be k mutually orthogonal subspaces of T,M

with dim L; = n;. Let {e1, -+ ,e,} be an orthonormal basis of T, M,
such that

Ll = Span{ela et aenl}y L2 == Spa'n{en1+17 T aen1+n2}7 Tty

Ly, = span{en,+-tny_ 141" 1 C€nytetng_1+ng I
Choosing e; = secAPeq,--- ,eqr, = secPeg .1, for i =13,---,2l -1,
we get (Pez, €i+1) = cosé. Thus it follows that ¥(L;) = [ 5 ] cos? @ for
all j =1,--- , k. Putting these values of || P||* and \I/( ;) in (23), we get
(31). O

COROLLARY 3.9. For a submanifold M in a manifold M , we have the
following table

M M Inequality
M(fi,f2) | TR 8(n,-- ,ni) <b(ny,- - m) [HIZ +a(na, - ) fr
M(fl)f?) I 5("’17"'ank)sb(nlv'“7nk)“H”2+a(n17"','n'k:)fl
+% (n—22§:1 mj) f2cos26,
M(c,a) | S |8(ni,---,nx) <b(n,--,mi) |HI? +a(n1, -, ny) 132
+% (n - 22?:1 mj) (¢ — a)cos? 8
M(c,a) | TR | §(n1,--+,mp) < b(ny,- ,mg) [HI? +a(n, - ny) L322
M(c,a) | I |8(mi,---,np) <b(ny,-- k) |HI? +a(ny, -, ny) 232
v+% (n—22§=1 mj> (c—a)
M(C) S é(nl,"'1"k)§b(n17"’7nk)”H“2+a(n1:"'7nkt)
+% (n — 22;?:1 mj) ccos? @

wlo

A?(c) TR 5(n17'“)nk)gb(nly"‘7nk)”H||2+a(n1"")nk)§

M (c) I | 8(na,--,mk) <b(ny,- - n) |HI® +a(n, - ne) §
+% (n—22?=1 mj) c

R(c) §(n,- - ,mp) <b(na,- - m) |HI? +a(ny, - yne) e

where “TR”, “I” and “S” stand for totally real, invariant and 0-slant
respectively.
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