• Title/Summary/Keyword: generalized beta function

Search Result 62, Processing Time 0.019 seconds

THE INCOMPLETE GENERALIZED τ-HYPERGEOMETRIC AND SECOND τ-APPELL FUNCTIONS

  • Parmar, Rakesh Kumar;Saxena, Ram Kishore
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.363-379
    • /
    • 2016
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] and the second Appell function [Appl. Math. Comput. 219 (2013), 8332-8337] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we introduce here the family of the incomplete generalized ${\tau}$-hypergeometric functions $2{\gamma}_1^{\tau}(z)$ and $2{\Gamma}_1^{\tau}(z)$. The main object of this paper is to study these extensions and investigate their several properties including, for example, their integral representations, derivative formulas, Euler-Beta transform and associated with certain fractional calculus operators. Further, we introduce and investigate the family of incomplete second ${\tau}$-Appell hypergeometric functions ${\Gamma}_2^{{\tau}_1,{\tau}_2}$ and ${\gamma}_2^{{\tau}_1,{\tau}_2}$ of two variables. Relevant connections of certain special cases of the main results presented here with some known identities are also pointed out.

SOME GENERALIZED GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.121-136
    • /
    • 2021
  • In this paper we wish to prove some results relating to the growth rates of composite entire and meromorphic functions with their corresponding left and right factors on the basis of their generalized order (��, ��) and generalized lower order (��, ��), where �� and �� are continuous non-negative functions defined on (-∞, +∞).

GENERALIZED RELATIVE ORDER (α, β) ORIENTED SOME GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Tanmay Biswas ;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.139-154
    • /
    • 2023
  • In this paper we wish to prove some results relating to the growth rates of composite entire and meromorphic functions with their corresponding left and right factors on the basis of their generalized relative order (α, β) and generalized relative lower order (α, β), where α and β are continuous non-negative functions defined on (-∞, +∞).

REGIONS OF VARIABILITY FOR GENERALIZED α-CONVEX AND β-STARLIKE FUNCTIONS, AND THEIR EXTREME POINTS

  • Chen, Shaolin;Huang, Aiwu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.557-569
    • /
    • 2010
  • Suppose that n is a positive integer. For any real number $\alpha$($\beta$ resp.) with $\alpha$ < 1 ($\beta$ > 1 resp.), let $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) be the class of analytic functions in the unit disk $\mathbb{D}$ with f(0) = f'(0) = $\cdots$ = $f^{(n-1)}(0)$ = $f^{(n)}(0)-1\;=\;0$, Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) > $\alpha$ (Re($\frac{zf^{n+1}(z)}{f^{(n)}(z)}+1$) < $\beta$ resp.) in $\mathbb{D}$, and for any ${\lambda}\;{\in}\;\bar{\mathbb{D}}$, let $K^{(n)}({\alpha},\;{\lambda})$ $K^{(n)}({\beta},\;{\lambda})$ resp.) denote a subclass of $K^{(n)}(\alpha)$ ($K^{(n)}(\beta)$ resp.) whose elements satisfy some condition about derivatives. For any fixed $z_0\;{\in}\;\mathbb{D}$, we shall determine the two regions of variability $V^{(n)}(z_0,\;{\alpha})$, ($V^{(n)}(z_0,\;{\beta})$ resp.) and $V^{(n)}(z_0,\;{\alpha},\;{\lambda})$ ($V^{(n)}(z_0,\;{\beta},\;{\lambda})$ resp.). Also we shall determine the extreme points of the families of analytic functions which satisfy $f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\alpha})$ ($f(\mathbb{D})\;{\subset}\;V^{(n)}(z_0,\;{\beta})$ resp.) when f ranges over the classes $K^{(n)}(\alpha)$ ($K^{(n)(\beta)$ resp.) and $K^{(n)}({\alpha},\;{\lambda})$ ($K^{(n)}({\beta},\;{\lambda})$ resp.), respectively.

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

  • Arshad, Muhammad;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.143-155
    • /
    • 2018
  • In this present paper, our aim is to introduce an extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ which is established with the help of the extended beta function. Also, we investigate certain integral transforms and generalized integration formulas for the newly defined extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ and the obtained results are expressed in terms of Fox-Wright function. Some interesting special cases involving an extended Mittag-Leffler functions are deduced.

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

ON THE STABILITY OF A BETA TYPE FUNCTIONAL EQUATIONS

  • Kim, Gwang-Hui;Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.429-445
    • /
    • 2004
  • In this paper we investigate the generalized Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(x,y)){\;}={\;}\phi(x,y)f(x,y)$, where x, y lie in the set S. As a consequence we obtain stability in the sense of Hyers, Ulam, Rassias, Gavruta, for some well-known equations such as the gamma, beta and G-function type equations.

GENERALIZED HYERES{ULAM STABILITY OF A QUADRATIC FUNCTIONAL EQUATION WITH INVOLUTION IN QUASI-${\beta}$-NORMED SPACES

  • Janfada, Mohammad;Sadeghi, Ghadir
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1421-1433
    • /
    • 2011
  • In this paper, using a fixed point approach, the generalized Hyeres-Ulam stability of the following quadratic functional equation $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=3(f(x)+f(y)+f(z))$ will be studied, where f is a function from abelian group G into a quasi-${\beta}$-normed space and ${\sigma}$ is an involution on the group G. Next, we consider its pexiderized equation of the form $f(x+y+z)+f(x+{\sigma}(y))+f(y+{\sigma}(z))+f(x+{\sigma}(z))=g(x)+g(y)+g(z)$ and its generalized Hyeres-Ulam stability.

GENERALIZATION OF EXTENDED APPELL'S AND LAURICELLA'S HYPERGEOMETRIC FUNCTIONS

  • Khan, N.U.;Ghayasuddin, M.
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.113-126
    • /
    • 2015
  • Recently, Liu and Wang generalized Appell's and Lauricella's hypergeometric functions. Motivated by the work of Liu and Wang, the main object of this paper is to present new generalizations of Appell's and Lauricella's hypergeometric functions. Some integral representations, transformation formulae, differential formulae and recurrence relations are obtained for these new generalized Appell's and Lauricella's functions.